Fluorescent molecular logic gates using microfluidic devices.

[1]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[2]  Chunhai Fan,et al.  Construction of molecular logic gates with a DNA-cleaving deoxyribozyme. , 2006, Angewandte Chemie.

[3]  Kwang Soo Kim,et al.  New imidazolium systems bearing two pyrene groups as fluorescent chemosensors for anions and anion induced logic gates , 2007 .

[4]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[5]  D. Qu,et al.  A half adder based on a photochemically driven [2]rotaxane. , 2005, Angewandte Chemie.

[6]  Jung Hyun Soh,et al.  Rhodamine urea derivatives as fluorescent chemosensors for Hg2 , 2007 .

[7]  Joakim Andréasson,et al.  All-photonic molecular half-adder. , 2006, Journal of the American Chemical Society.

[8]  H. Iwamoto,et al.  Copper binding selectivity of N- and C-sites in serum (human)- and ovo-transferrin. , 1996, Biochimica et biophysica acta.

[9]  S. Quake,et al.  Multistep Synthesis of a Radiolabeled Imaging Probe Using Integrated Microfluidics , 2005, Science.

[10]  Galina Melman,et al.  A molecular keypad lock: a photochemical device capable of authorizing password entries. , 2007, Journal of the American Chemical Society.

[11]  Uwe Pischel,et al.  Chemical approaches to molecular logic elements for addition and subtraction. , 2007, Angewandte Chemie.

[12]  C. McCoy,et al.  A molecular photoionic AND gate based on fluorescent signalling , 1993, Nature.

[13]  Tae-Hee Lee,et al.  Single-molecule optoelectronics. , 2005, Accounts of chemical research.

[14]  Juyoung Yoon,et al.  A highly selective fluorescent chemosensor for Pb2+. , 2005, Journal of the American Chemical Society.

[15]  Dim-Lee Kwong,et al.  Digital microfluidics: Droplet based logic gates , 2007 .

[16]  Juyoung Yoon,et al.  A fluorescein derivative for nanomolar aqueous copper and monitoring copper ion uptake by transferrin and amyloid precursor protein , 2006 .

[17]  D T Chiu,et al.  Using three-dimensional microfluidic networks for solving computationally hard problems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  A. Guber,et al.  High-density plastic microfluidic platforms for capillary electrophoresis separation and high-throughput screening , 2002 .

[19]  A. Prasanna de Silva,et al.  Luminescent sensors and switches in the early 21st century , 2005 .

[20]  R. Løvstad A kinetic study on the distribution of Cu(II)-ions between albumin and transferrin , 2004, Biometals.

[21]  A. P. de Silva,et al.  Analog parallel processing of molecular sensory information. , 2007, Journal of the American Chemical Society.

[22]  N. Sugimoto,et al.  DNA logic gates based on structural polymorphism of telomere DNA molecules responding to chemical input signals. , 2006, Angewandte Chemie.

[23]  Vincent Studer,et al.  A nanoliter-scale nucleic acid processor with parallel architecture , 2004, Nature Biotechnology.

[24]  S. Boppart,et al.  Evaluation of Microfluidic Biosensor Development Using Microscopic Analysis of Molecular Beacon Hybridization Kinetics , 2005, Biomedical microdevices.

[25]  William Thies,et al.  Digital microfluidics using soft lithography. , 2006, Lab on a chip.

[26]  Uwe Pischel,et al.  Chemische Strategien für den Aufbau molekularer Logikelemente zur Addition und Subtraktion , 2007 .

[27]  David Margulies,et al.  Fluorescein as a model molecular calculator with reset capability , 2005, Nature materials.

[28]  A. P. de Silva,et al.  Communicating chemical congregation: a molecular AND logic gate with three chemical inputs as a "lab-on-a-molecule" prototype. , 2006, Journal of the American Chemical Society.

[29]  S. Quake,et al.  Microfluidic Memory and Control Devices , 2003, Science.

[30]  J. Sessler,et al.  Coumarin-strapped calix[4]pyrrole: a fluorogenic anion receptor modulated by cation and anion binding. , 2005, Journal of the American Chemical Society.

[31]  S. Quake,et al.  Long-Term Monitoring of Bacteria Undergoing Programmed Population Control in a Microchemostat , 2005, Science.

[32]  Richard M Crooks,et al.  Microelectrochemical logic circuits. , 2003, Journal of the American Chemical Society.

[33]  Y. Li,et al.  Multiply Configurable Optical‐Logic Systems Based on Cationic Conjugated Polymer/DNA Assemblies , 2006 .

[34]  M. Madou,et al.  Characterization of DNA hybridization kinetics in a microfluidic flow channel , 2005, Sensors and Actuators B: Chemical.

[35]  Henrique E Toma,et al.  TiO2-based light-driven XOR/INH logic gates. , 2006, Angewandte Chemie.

[36]  N. Gershenfeld,et al.  Microfluidic Bubble Logic , 2006, Science.

[37]  Laura F. Landweber,et al.  Towards a re-programmable DNA computer , 2003, Natural Computing.

[38]  D. Qu,et al.  A Double INHIBIT Logic Gate Employing Configuration and Fluorescence Changes , 2006 .

[39]  A. Shanzer,et al.  A molecular full-adder and full-subtractor, an additional step toward a moleculator. , 2006, Journal of the American Chemical Society.

[40]  D. van Noort,et al.  A biological sensor platform using a pneumatic-valve controlled microfluidic device containing Tetrahymena pyriformis. , 2007, Lab on a chip.