Massively-parallel single nucleus RNA-seq with DroNc-seq

Single-nucleus RNA sequencing (sNuc-seq) profiles RNA from tissues that are preserved or cannot be dissociated, but it does not provide high throughput. Here, we develop DroNc-seq: massively parallel sNuc-seq with droplet technology. We profile 39,111 nuclei from mouse and human archived brain samples to demonstrate sensitive, efficient, and unbiased classification of cell types, paving the way for systematic charting of cell atlases.

[1]  F. Gage,et al.  RNA-sequencing from single nuclei , 2013, Proceedings of the National Academy of Sciences.

[2]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[3]  Thomas M. Norman,et al.  A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response , 2016, Cell.

[4]  A. Regev,et al.  Scaling single-cell genomics from phenomenology to mechanism , 2017, Nature.

[5]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[6]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[7]  Conor Fitzpatrick,et al.  Nuclear RNA-seq of single neurons reveals molecular signatures of activation , 2016, Nature communications.

[8]  N. Friedman,et al.  High-Resolution Sequencing and Modeling Identifies Distinct Dynamic RNA Regulatory Strategies , 2014, Cell.

[9]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[10]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[11]  Cynthia C. Hession,et al.  Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons , 2016, Science.

[12]  N. Friedman,et al.  Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells , 2011, Nature Biotechnology.

[13]  M. Gorospe,et al.  Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability , 2005, BMC Genomics.

[14]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[15]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[16]  A. Regev,et al.  Revealing the vectors of cellular identity with single-cell genomics , 2016, Nature Biotechnology.

[17]  Ellen T. Gelfand,et al.  A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project , 2015, Biopreservation and biobanking.

[18]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[19]  Christof Koch,et al.  Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics , 2016, Nature Neuroscience.

[20]  Andrew McDavid,et al.  Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments , 2012, Bioinform..

[21]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[22]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[23]  M. Ronaghi,et al.  Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain , 2016, Science.

[24]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[25]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[26]  Dmitri D. Pervouchine,et al.  The human transcriptome across tissues and individuals , 2015, Science.

[27]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[28]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[30]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .