Modeling N-methyl-d-aspartate-induced bursting in dopamine neurons

[1]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[2]  D. Kennedy,et al.  Neuromuscular effects of impulse pattern in a crustacean motoneuron. , 1969, Journal of neurophysiology.

[3]  M. Kim,et al.  Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations. , 1976, Biophysical journal.

[4]  R. Dyball,et al.  Phasic firing enhances vasopressin release from the rat neurohypophysis , 1979, The Journal of physiology.

[5]  D. Poulain,et al.  Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin , 1982, Neuroscience.

[6]  J. Keizer,et al.  Minimal model for membrane oscillations in the pancreatic beta-cell. , 1983, Biophysical journal.

[7]  P. Schwindt,et al.  Multiple actions of N-methyl-d-aspartate on cat neocortical neurons in vitro , 1983, Brain Research.

[8]  A. Grace,et al.  The control of firing pattern in nigral dopamine neurons: burst firing , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  A. Grace,et al.  The control of firing pattern in nigral dopamine neurons: single spike firing , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  R. Llinás,et al.  Electrophysiology of pars compacta cells in the in vitro substantia nigra—a possible mechanism for dendritic release , 1984, Brain Research.

[11]  M. Mayer,et al.  The action of N‐methyl‐D‐aspartic acid on mouse spinal neurones in culture. , 1985, The Journal of physiology.

[12]  S. Grillner,et al.  The ionic mechanisms underlying N-methyl-d-aspartate receptor-induced, tetrodotoxin-resistant membrane potential oscillations in lamprey neurons active during locomotion , 1985, Neuroscience Letters.

[13]  S. Grillner,et al.  Activation of NMDA receptors elecits fictive locomotion and bistable membrane properties in the lamprey spinal cord , 1985, Brain Research.

[14]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[15]  T. Kita,et al.  Electrical membrane properties of rat substantia nigra compacta neurons in an in vitro slice preparation , 1986, Brain Research.

[16]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[17]  L. Nowak,et al.  The role of divalent cations in the N‐methyl‐D‐aspartate responses of mouse central neurones in culture. , 1988, The Journal of physiology.

[18]  F. Gonon Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry , 1988, Neuroscience.

[19]  A. Grace,et al.  Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  W. Levy,et al.  Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. , 1990, Journal of neurophysiology.

[21]  C. Stevens,et al.  Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  Jacques Durand,et al.  NMDA Actions on Rat Abducens Motoneurons , 1991, The European journal of neuroscience.

[23]  F. Ashcroft,et al.  Identification and electrophysiology of isolated pars compacta neurons from guinea-pig substantia nigra , 1991, Neuroscience.

[24]  S. Grillner,et al.  Computer simulations of N-methyl-D-aspartate receptor-induced membrane properties in a neuron model. , 1991, Journal of neurophysiology.

[25]  J. Hounsgaard,et al.  Electrophysiological localization of distinct calcium potentials at selective somatodendritic sites in the substantia nigra , 1992, Neuroscience.

[26]  B. Hu,et al.  NMDA receptor‐mediated rhythmic bursting activity in rat supraoptic nucleus neurones in vitro. , 1992, The Journal of physiology.

[27]  B. Hille,et al.  GnRH-induced Ca2+ oscillations and rhythmic hyperpolarizations of pituitary gonadotropes. , 1992, Science.

[28]  E. Rojas,et al.  Apamin‐sensitive potassium channels mediate agonist‐induced oscillations of membrane potential in pituitary gonadotrophs , 1992, FEBS letters.

[29]  R. North,et al.  Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. , 1992, Science.

[30]  W. Schultz,et al.  Reward-related activity in the monkey striatum and substantia nigra. , 1993, Progress in brain research.

[31]  D. Cardozo Midbrain dopaminergic neurons from postnatal rat in long-term primary culture , 1993, Neuroscience.

[32]  Steven W. Johnson,et al.  Apamin increases NMDA-induced burst-firing of rat mesencephalic dopamine neurons , 1993, Brain Research.

[33]  D. Hilgemann Channel-like function of the Na,K pump probed at microsecond resolution in giant membrane patches. , 1994, Science.

[34]  R. North,et al.  Effect of dopamine and baclofen on N-methyl-d-aspartate-induced burst firing in rat ventral tegmental neurons , 1994, Neuroscience.

[35]  Alessandro Stefani,et al.  Effects of dihydropyridine calcium antagonists on rat midbrain dopaminergic neurones , 1994, British journal of pharmacology.

[36]  R. Bertram,et al.  Topological and phenomenological classification of bursting oscillations. , 1995, Bulletin of mathematical biology.

[37]  T J Sejnowski,et al.  In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  D. Gadsby,et al.  Voltage dependence of the Na/K pump. , 1997, The Journal of membrane biology.