Distributed Localization of Modular Robot Ensembles

Internal localization, the problem of estimating relative pose for each module of a modular robot, is a prerequisite for many shape control, locomotion, and actuation algorithms. In this paper, we propose a robust hierarchical approach that uses normalized cut to identify dense sub-regions with small mutual localization error, then progressively merges those sub-regions to localize the entire ensemble. Our method works well in both two and three dimensions, and requires neither exact measurements nor rigid inter-module connectors. Most of the computations in our method can be distributed effectively. The result is a robust algorithm that scales to large ensembles. We evaluate our algorithm in two- and three-dimensional simulations of scenarios with up to 10,000 modules.

[1]  Letizia Tanca,et al.  What you Always Wanted to Know About Datalog (And Never Dared to Ask) , 1989, IEEE Trans. Knowl. Data Eng..

[2]  Edwin Olson,et al.  Fast iterative alignment of pose graphs with poor initial estimates , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[3]  Avi Pfeffer,et al.  Loopy Belief Propagation as a Basis for Communication in Sensor Networks , 2002, UAI.

[4]  Yinyu Ye,et al.  Semidefinite programming based algorithms for sensor network localization , 2006, TOSN.

[5]  Daniela Rus,et al.  Miche: Modular Shape Formation by Self-Dissasembly , 2007, ICRA.

[6]  Udo Frese,et al.  Closing a Million-Landmarks Loop , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Mark A. Paskin,et al.  Thin Junction Tree Filters for Simultaneous Localization and Mapping , 2002, IJCAI.

[8]  Mark Yim,et al.  PolyBot: a modular reconfigurable robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Wolfram Burgard,et al.  Efficient estimation of accurate maximum likelihood maps in 3D , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Kasper Stoy Emergent Control of Self-Reconfigurable Robots , 2004 .

[11]  Seth Copen Goldstein,et al.  Claytronics: A Scalable Basis For Future Robots , 2004 .

[12]  Iuliu Vasilescu,et al.  Miche: Modular Shape Formation by Self-Disassembly , 2008, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[13]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Ying Zhang,et al.  Localization from mere connectivity , 2003, MobiHoc '03.

[15]  Javier González,et al.  Consistent observation grouping for generating metric-topological maps that improves robot localization , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[16]  Wolfram Burgard,et al.  A Tree Parameterization for Efficiently Computing Maximum Likelihood Maps using Gradient Descent , 2007, Robotics: Science and Systems.

[17]  Siddhartha S. Srinivasa,et al.  Decentralized estimation and control of graph connectivity in mobile sensor networks , 2008, 2008 American Control Conference.

[18]  Ben J. A. Kröse,et al.  From images to rooms , 2007, Robotics Auton. Syst..

[19]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[20]  Nicholas Roy,et al.  Topological mapping using spectral clustering and classification , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[22]  Padmanabhan Pillai,et al.  A 3D Fax Machine based on Claytronics , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Hod Lipson,et al.  Three Dimensional Stochastic Reconfiguration of Modular Robots , 2005, Robotics: Science and Systems.

[24]  Seth Copen Goldstein,et al.  Meld: A declarative approach to programming ensembles , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Ben J. A. Kröse,et al.  Hierarchical map building using visual landmarks and geometric constraints , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Stephen P. Boyd,et al.  Further Relaxations of the SDP Approach to Sensor Network Localization , 2007 .

[28]  Tom Duckett,et al.  A multilevel relaxation algorithm for simultaneous localization and mapping , 2005, IEEE Transactions on Robotics.

[29]  Ion Stoica,et al.  Declarative networking: language, execution and optimization , 2006, SIGMOD Conference.

[30]  Stephen R. Marsland,et al.  Fast, On-Line Learning of Globally Consistent Maps , 2002, Auton. Robots.

[31]  Mark Moll,et al.  Modular Self-reconfigurable Robot Systems: Challenges and Opportunities for the Future , 2007 .

[32]  Ying Zhang,et al.  Six Degree of Freedom Sensing for Docking Using IR LED Emitters and Receivers , 2000, ISER.