Logic-based switching algorithms in control

This thesis deals with the use of logic-based switching in the control of imprecisely modeled nonlinear systems. Each control system considered consists of a continuous-time dynamical process to be controlled, a family of candidate controllers, and an event-driven switching logic. The need for switching arises when no single candidate controller is capable, by itself, of guaranteeing good performance when connected with a poorly modeled process. In this thesis we develop provably correct switching strategies capable of determining in real-time which candidate controller should be put in feedback with a process so as to achieve a desired closed-loop performance. The resulting closed-loop systems are hybrid in the sense that in each case, continuous dynamics interact with event-driven logic. In the process of designing these switching algorithms, we develop several tools for the analysis and synthesis of hybrid systems. Some of these tools also find application in the design of nonadaptive logic-based switching controllers for systems like the “nonholonomic integrator”, a model that, although locally null controllable, is not stabilizable by smooth, time-invariant control laws. Poorly modeled sensors are also considered in this thesis. In our study of imprecisely modeled sensors we focus on the problem of positioning a robot using a pair of cameras acting as a position measuring device. We derive conditions that enable one to decide on the basis of images acquired by an imprecisely modeled two-camera system, whether or not a prescribed robot positioning task has been precisely accomplished. This line of research represents an initial step towards the design of feedback control systems capable of precise robot positioning using visual feedback, in spite of camera miscalibration.

[1]  P. Kokotovic,et al.  Inverse Optimality in Robust Stabilization , 1996 .

[2]  D. Mayne,et al.  Design issues in adaptive control , 1988 .

[3]  Michael S. Branicky,et al.  Studies in hybrid systems: modeling, analysis, and control , 1996 .

[4]  Robert L. Kosut Uncertainty model unfalsification: a system identification paradigm compatible with robust control design , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[5]  P. Ramadge,et al.  Model and controller selection policies based on output prediction errors , 1996, IEEE Trans. Autom. Control..

[6]  Roberto Cipolla,et al.  Uncalibrated stereo hand-eye coordination , 1994, Image Vis. Comput..

[7]  Lee E. Weiss,et al.  Adaptive Visual Servo Control of Robots , 1983 .

[8]  Eduardo D. Sontag,et al.  DETECTABILITY OF NONLINEAR SYSTEMS , 1996 .

[9]  J.P. Hespanha,et al.  Towards the supervisory control of uncertain nonholonomic systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[10]  Munther A. Dahleh,et al.  A unified framework for identification and control , 1995 .

[11]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[12]  A. S. MorseCenter Certainty Equivalence Implies Detectability , 1998 .

[13]  R. Ruth,et al.  Stability of dynamical systems , 1988 .

[14]  G. Goodwin,et al.  Hysteresis switching adaptive control of linear multivariable systems , 1994, IEEE Trans. Autom. Control..

[15]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[16]  Elias B. Kosmatopoulos,et al.  A switching adaptive controller for feedback linearizable systems , 1999, IEEE Trans. Autom. Control..

[17]  Kumpati S. Narendra,et al.  Adaptive control using multiple models , 1997, IEEE Trans. Autom. Control..

[18]  A. Morse Supervisory control of families of linear set-point controllers. 2. Robustness , 1997, IEEE Trans. Autom. Control..

[19]  Bengt Mårtensson,et al.  The order of any stabilizing regulator is sufficient a priori information for adaptive stabilization , 1985 .

[20]  V. I. Utkin,et al.  Stabilization of non-holonomic mobile robots using Lyapunov functions for navigation and sliding mode control , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[21]  G. Zames Towards a general complexity-based theory of identification and adaptive control , 1997 .

[22]  Sundeep Rangan,et al.  Multimodel adaptive H∞ control , 1996 .

[23]  Sundeep Rangan,et al.  Asymptotic performance in adaptive H/sub /spl infin// control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[24]  V. Borkar,et al.  A unified framework for hybrid control : b background, model, and theory , 1994 .

[25]  Jean-Baptiste Pomet Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift , 1992 .

[26]  P. Hespanha,et al.  Supervisory field‐oriented control of induction motors with uncertain rotor resistance , 1998 .

[27]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[28]  A. Stephen Morse,et al.  Control Using Logic-Based Switching , 1997 .

[29]  Richard M. Murray,et al.  Nonholonomic control systems: from steering to stabilization with sinusoids , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[30]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[31]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[32]  Gregory D. Hager,et al.  Task re-encoding in vision-based control systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[33]  I. Kolmanovsky,et al.  Hybrid feedback laws for a class of cascade nonlinear control systems , 1996, IEEE Trans. Autom. Control..

[34]  Olivier D. Faugeras,et al.  What can be seen in three dimensions with an uncalibrated stereo rig , 1992, ECCV.

[35]  Stephen P. Boyd,et al.  Set-membership identification of systems with parametric and nonparametric uncertainty , 1992 .

[36]  Daniel E. Miller,et al.  An adaptive controller which provides an arbitrarily good transient and steady-state response , 1991 .

[37]  W. Sardha Wijesoma,et al.  Eye-to-Hand Coordination for Vision-Guided Robot Control Applications , 1993, Int. J. Robotics Res..

[38]  J. P. Lasalle,et al.  Absolute Stability of Regulator Systems , 1964 .

[39]  Yasuaki Kuroe,et al.  A solution to the common Lyapunov function problem for continuous-time systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[40]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[41]  Michael G. Safonov,et al.  The unfalsified control concept: A direct path from experiment to controller , 1995 .

[42]  Andrew R. Teel,et al.  Feedback Stabilization of Nonlinear Systems: Sufficient Conditions and Lyapunov and Input-output Techniques , 1995 .

[43]  Fuad Kassab,et al.  Parallel algorithms for adaptive control: Robust stability , 1996 .

[44]  Patrick Rives,et al.  Classification and realization of the different vision-based tasks , 1993 .

[45]  Olivier D. Faugeras,et al.  Relative 3D positioning and 3D convex hull computation from a weakly calibrated stereo pair , 1995, Image Vis. Comput..

[46]  Olac Fuentes,et al.  Experimental evaluation of uncalibrated visual servoing for precision manipulation , 1997, Proceedings of International Conference on Robotics and Automation.

[47]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[48]  Peter Corke,et al.  VISUAL CONTROL OF ROBOT MANIPULATORS – A REVIEW , 1993 .

[49]  L. Tavernini Differential automata and their discrete simulators , 1987 .

[50]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[51]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[52]  Panos J. Antsaklis,et al.  Hybrid System Modeling and Autonomous Control Systems , 1992, Hybrid Systems.

[53]  Ernst D. Dickmanns,et al.  Visual grasping with long delay time of a free floating object in orbit , 1994, Auton. Robots.

[54]  Eduardo Sontag,et al.  Changing supply functions in input/state stable systems , 1995, IEEE Trans. Autom. Control..

[55]  B. Barmish,et al.  Adaptive stabilization of linear systems via switching control , 1986, 1986 25th IEEE Conference on Decision and Control.

[56]  J.P. Hespanha,et al.  Supervisory control of families of noise suppressing controllers , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[57]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[58]  J. Tsitsiklis,et al.  The spectral radius of a pair of matrices is hard to compute , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[59]  Karl Johan Åström,et al.  Adaptive control around 1960 , 1995 .

[60]  A. Morse,et al.  A cyclic switching strategy for parameter-adaptive control , 1994, IEEE Trans. Autom. Control..

[61]  E. Ryan On Brockett's Condition for Smooth Stabilizability and its Necessity in a Context of Nonsmooth Feedback , 1994 .

[62]  Linda Bushnell,et al.  Stabilization of multiple input chained form control systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[63]  Robert L. Grossman,et al.  Timed Automata , 1999, CAV.

[64]  Michael J. Seelinger,et al.  Vision-guided, semiautonomous system applied to a robotic coating application , 1997, Other Conferences.

[65]  Pramod Khargonekar,et al.  A Time-Domain Approach to Model Validation , 1992, 1992 American Control Conference.

[66]  K. Narendra,et al.  A common Lyapunov function for stable LTI systems with commuting A-matrices , 1994, IEEE Trans. Autom. Control..

[67]  A. Stephen Morse,et al.  Vision-based control of uncertain systems , 1997 .

[68]  G. Zames,et al.  Feedback control, nonlinear systems, and complexity , 1995 .

[69]  Gregory D. Hager,et al.  Calibration-free visual control using projective invariance , 1995, Proceedings of IEEE International Conference on Computer Vision.

[70]  A. Morse Supervisory control of families of linear set-point controllers Part I. Exact matching , 1996, IEEE Trans. Autom. Control..

[71]  François Chaumette,et al.  2d 1/2 visual servoing with respect to a planar object , 1997 .

[72]  K.J. Astrom Adaptive control around 1960 , 1996, IEEE Control Systems.

[73]  Anil Nerode,et al.  Models for Hybrid Systems: Automata, Topologies, Controllability, Observability , 1992, Hybrid Systems.

[74]  I. Kanellakopoulos,et al.  A toolkit for nonlinear feedback design , 1992 .

[75]  João Pedro Hespanha,et al.  Stabilization of nonholonomic integrators via logic-based switching , 1999, Autom..

[76]  Eduardo Sontag,et al.  Output-to-state stability and detectability of nonlinear systems , 1997 .

[77]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[78]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[79]  Steven B. Skaar,et al.  Three-Dimensional Camera Space Manipulation , 1990, Int. J. Robotics Res..

[80]  Andrew R. Teel,et al.  The possibility of indecision in intelligent control , 1997 .

[81]  John Guckenheimer,et al.  A Dynamical Simulation Facility for Hybrid Systems , 1993, Hybrid Systems.

[82]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[83]  Michael G. Safonov,et al.  A falsification perspective on model reference adaptive control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[84]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[85]  M. Hebert,et al.  Applications of Non-Metric Vision to some Visually Guided Robotics Tasks , 1995 .

[86]  Gregory D. Hager,et al.  Robot hand-eye coordination based on stereo vision , 1995 .

[87]  Emanuele Trucco,et al.  Geometric Invariance in Computer Vision , 1995 .

[88]  Roger W. Brockett,et al.  Hybrid Models for Motion Control Systems , 1993 .

[89]  A. Goldenberg,et al.  Design of smooth dynamic feedback for stabilization of nonholonomic systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[90]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[91]  Minyue Fu,et al.  Minimum switching control for adaptive tracking , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[92]  Rafael Kelly,et al.  Robust asymptotically stable visual servoing of planar robots , 1996, IEEE Trans. Robotics Autom..

[93]  Claude Samson,et al.  Robot Control: The Task Function Approach , 1991 .

[94]  Michael G. Safonov,et al.  Focusing on the Knowable Controller Invalidation and Learning , 1999 .

[95]  Iven M. Y. Mareels,et al.  Adaptive systems - an introduction , 1996, Systems and control.

[96]  Sergey V. Drakunov,et al.  Stabilization and tracking in the nonholonomic integrator via sliding modes , 1996 .

[97]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[98]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[99]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[100]  W. Dayawansa,et al.  On the existence of a Lyapunov function for a family of switching systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[101]  K. Narendra,et al.  A sufficient condition for the existence of a common Lyapunov function for two second order linear systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[102]  R. Murray,et al.  Exponential stabilization of driftless nonlinear control systems using homogeneous feedback , 1997, IEEE Trans. Autom. Control..

[103]  A. Morse,et al.  MIMO Design Models and Internal Regulators for Cyclicly-Switched Parameter-Adaptive Control Systems , 1993, 1993 American Control Conference.

[104]  M. Reyhanoglu,et al.  Discontinuous feedback stabilization of nonholonomic systems in extended power form , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[105]  Edward J. Davison,et al.  Switching control of a family of plants , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[106]  Kameshwar Poolla,et al.  Optimal asymptotic robust performance through logic-based switching , 1997 .

[107]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[108]  John B. Moore,et al.  Indirect adaptive techniques for fixed controller performance enhancement , 1989 .

[109]  Benedetto Piccoli,et al.  A hybrid controller for a nonholonomic system , 1998 .

[110]  A. Morse Supervisory control of families of linear set-point controllers , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[111]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[112]  Y. Pyatnitskiy,et al.  Criteria of asymptotic stability of differential and difference inclusions encountered in control theory , 1989 .

[113]  A. Morse,et al.  Applications of hysteresis switching in parameter adaptive control , 1992 .

[114]  A. Morse Towards a unified theory of parameter adaptive control. II. Certainty equivalence and implicit tuning , 1992 .