A refinement of the Cameron–Erdős conjecture
暂无分享,去创建一个
Wojciech Samotij | Noga Alon | Robert Morris | J'ozsef Balogh | N. Alon | W. Samotij | J. Balogh | R. Morris | Wojciech Samotij
[1] Ben Green. Counting Sets With Small Sumset, And The Clique Number Of Random Cayley Graphs , 2005, Comb..
[2] Ben Green,et al. Sum-free sets in abelian groups , 2003 .
[3] S. S. Pillai. On the addition of residue classes , 1938 .
[4] D. Saxton,et al. Hypergraph containers , 2012, 1204.6595.
[5] V. Rödl,et al. Ramsey properties of random discrete structures , 2010 .
[6] R. Rado,et al. Studien zur Kombinatorik , 1933 .
[7] alcun K. grafo. ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .
[8] V. Rödl,et al. Threshold functions for Ramsey properties , 1995 .
[9] H. Abbott,et al. Sum-free sets of integers , 1966 .
[10] G. Hardy,et al. Asymptotic Formulaæ in Combinatory Analysis , 1918 .
[11] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[12] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[13] K. F. Roth. On Certain Sets of Integers , 1953 .
[14] Ben Green,et al. An inverse theorem for the Gowers U^{s+1}[N]-norm (announcement) , 2010, 1009.3998.
[15] Wojciech Samotij,et al. Random sum-free subsets of abelian groups , 2011, 1103.2041.
[16] Maximal Sum-Free Sets of Group Elements , 1969 .
[17] Wojciech Samotij. Stability results for random discrete structures , 2014, Random Struct. Algorithms.
[18] Ben Green,et al. Linear equations in primes , 2006, math/0606088.
[19] G. Hardy,et al. Asymptotic formulae in combinatory analysis , 1918 .
[20] Solution of the Cameron-Erdös problem for groups of prime order , 2009 .
[21] Terence Tao,et al. Additive combinatorics , 2007, Cambridge studies in advanced mathematics.
[22] Terence Tao,et al. An inverse theorem for the Gowers U^{s+1}[N]-norm , 2010 .
[23] V. Rödl,et al. Arithmetic progressions of length three in subsets of a random set , 1996 .
[24] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[25] Konstantinos Panagiotou,et al. Extremal subgraphs of random graphs , 2007, SODA '07.
[26] Deryk Osthus,et al. For Which Densities are Random Triangle-Free Graphs Almost Surely Bipartite? , 2003, Comb..
[27] Vojtech Rödl,et al. On Schur Properties of Random Subsets of Integers , 1996 .
[28] Imre Z. Ruzsa,et al. Generalized arithmetical progressions and sumsets , 1994 .
[29] A. Cauchy. Oeuvres complètes: Recherches sur les nombres , 2009 .
[30] Alexander A. Sapozhenko. The Cameron-Erdös conjecture , 2008, Discret. Math..
[31] Gregory A. Freiman. On the structure and the number of sum-free sets , 1992 .
[32] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[33] W. T. Gowers,et al. Combinatorial theorems in sparse random sets , 2010, 1011.4310.
[34] H. P. Yap,et al. Maximal Sum-Free Sets of Elements of Finite Groups , 1969 .
[35] A. A. Sapozhenko. The Cameron-Erd˝ os conjecture , 2008 .
[36] Neil J. Calkin. On the Number of Sum-Free Sets , 1990 .
[37] Ben Green,et al. The structure of approximate groups , 2011, Publications mathématiques de l'IHÉS.
[38] Richard Mollin,et al. On the Number of Sets of Integers With Various Properties , 1990 .
[39] Andrzej Ruciński,et al. Rado Partition Theorem for Random Subsets of Integers , 1997 .
[40] Vojtech Rödl,et al. A sharp threshold for random graphs with a monochromatic triangle in every edge coloring , 2006, Memoirs of the American Mathematical Society.
[41] W. T. Gowers,et al. A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .
[42] Vojtech Rödl,et al. Ramsey properties of random discrete structures , 2010, Random Struct. Algorithms.
[43] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.
[44] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[45] Ben Green,et al. Counting sumsets and sum-free sets modulo a prime , 2004 .
[46] Ben Green,et al. AN INVERSE THEOREM FOR THE GOWERS U4-NORM , 2005, Glasgow Mathematical Journal.