A refinement of the Cameron–Erdős conjecture

In this paper, we study sum free subsets of the set {1,...,n}, that is, subsets of the first n positive integers which contain no solution to the equation x + y = z. and Erdos conjectured in 1990 that the lumber of such sets is O(2(n)/2). This conjecture was confirmed by Green and, independently, by Sapozhenko. Here, we prove a refined version of their theorem, by showing that the number of sum-free subsets of [n] of size In is 2(O(n/m))([(n/2)), for every 1 to [17/21. For m >= root T., this result is sharp up to the constant implicit in the OH. Our proof uses a general bound on the number of independent sets of size to in 3-uniform hypergraphs, proved recently by the authors, and new bounds on the number of integer partitions with small sumset.

[1]  Ben Green Counting Sets With Small Sumset, And The Clique Number Of Random Cayley Graphs , 2005, Comb..

[2]  Ben Green,et al.  Sum-free sets in abelian groups , 2003 .

[3]  S. S. Pillai On the addition of residue classes , 1938 .

[4]  D. Saxton,et al.  Hypergraph containers , 2012, 1204.6595.

[5]  V. Rödl,et al.  Ramsey properties of random discrete structures , 2010 .

[6]  R. Rado,et al.  Studien zur Kombinatorik , 1933 .

[7]  alcun K. grafo ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .

[8]  V. Rödl,et al.  Threshold functions for Ramsey properties , 1995 .

[9]  H. Abbott,et al.  Sum-free sets of integers , 1966 .

[10]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[11]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[12]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[13]  K. F. Roth On Certain Sets of Integers , 1953 .

[14]  Ben Green,et al.  An inverse theorem for the Gowers U^{s+1}[N]-norm (announcement) , 2010, 1009.3998.

[15]  Wojciech Samotij,et al.  Random sum-free subsets of abelian groups , 2011, 1103.2041.

[16]  Maximal Sum-Free Sets of Group Elements , 1969 .

[17]  Wojciech Samotij Stability results for random discrete structures , 2014, Random Struct. Algorithms.

[18]  Ben Green,et al.  Linear equations in primes , 2006, math/0606088.

[19]  G. Hardy,et al.  Asymptotic formulae in combinatory analysis , 1918 .

[20]  Solution of the Cameron-Erdös problem for groups of prime order , 2009 .

[21]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[22]  Terence Tao,et al.  An inverse theorem for the Gowers U^{s+1}[N]-norm , 2010 .

[23]  V. Rödl,et al.  Arithmetic progressions of length three in subsets of a random set , 1996 .

[24]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[25]  Konstantinos Panagiotou,et al.  Extremal subgraphs of random graphs , 2007, SODA '07.

[26]  Deryk Osthus,et al.  For Which Densities are Random Triangle-Free Graphs Almost Surely Bipartite? , 2003, Comb..

[27]  Vojtech Rödl,et al.  On Schur Properties of Random Subsets of Integers , 1996 .

[28]  Imre Z. Ruzsa,et al.  Generalized arithmetical progressions and sumsets , 1994 .

[29]  A. Cauchy Oeuvres complètes: Recherches sur les nombres , 2009 .

[30]  Alexander A. Sapozhenko The Cameron-Erdös conjecture , 2008, Discret. Math..

[31]  Gregory A. Freiman On the structure and the number of sum-free sets , 1992 .

[32]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[33]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[34]  H. P. Yap,et al.  Maximal Sum-Free Sets of Elements of Finite Groups , 1969 .

[35]  A. A. Sapozhenko The Cameron-Erd˝ os conjecture , 2008 .

[36]  Neil J. Calkin On the Number of Sum-Free Sets , 1990 .

[37]  Ben Green,et al.  The structure of approximate groups , 2011, Publications mathématiques de l'IHÉS.

[38]  Richard Mollin,et al.  On the Number of Sets of Integers With Various Properties , 1990 .

[39]  Andrzej Ruciński,et al.  Rado Partition Theorem for Random Subsets of Integers , 1997 .

[40]  Vojtech Rödl,et al.  A sharp threshold for random graphs with a monochromatic triangle in every edge coloring , 2006, Memoirs of the American Mathematical Society.

[41]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[42]  Vojtech Rödl,et al.  Ramsey properties of random discrete structures , 2010, Random Struct. Algorithms.

[43]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[44]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[45]  Ben Green,et al.  Counting sumsets and sum-free sets modulo a prime , 2004 .

[46]  Ben Green,et al.  AN INVERSE THEOREM FOR THE GOWERS U4-NORM , 2005, Glasgow Mathematical Journal.