Data Science

Developed through a collaborative effort between the Statistics (http://statistics.columbian.gwu.edu), Mathematics (http://math.columbian.gwu.edu), Physics (http:// physics.columbian.gwu.edu), Economics (http:// economics.columbian.gwu.edu), Geography (http:// geography.columbian.gwu.edu), and Political Science (http:// politicalscience.columbian.gwu.edu) Departments, the Data Science program offers the master of science in data science and graduate certificate in data science. The program teaches students to understand data and contribute important insights with the goal of changing the way in which people live, work, and communicate. Through a structured curriculum that provides foundational knowledge as well as application skills, students learn how to confront the most complex problems facing government and private industry

[1]  Wing-Kai Hon,et al.  Generating databases for query workloads , 2010, Proc. VLDB Endow..

[2]  Ganesh Ramesh,et al.  Distribution-based synthetic database generation techniques for itemset mining , 2005, 9th International Database Engineering & Application Symposium (IDEAS'05).

[3]  J. Jolles,et al.  The relation between morbidity and cognitive performance in a normal aging population. , 1998, The journals of gerontology. Series A, Biological sciences and medical sciences.

[4]  John N. Wilson,et al.  The cost of reasoning with RDF updates , 2015, Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015).

[5]  Mark Roantree,et al.  Data transformation and query management in personal health sensor networks , 2011, J. Netw. Comput. Appl..

[6]  Christopher Olston,et al.  Generating example data for dataflow programs , 2009, SIGMOD Conference.

[7]  Bernardo Cuenca Grau,et al.  OWL 2 Web Ontology Language: Profiles , 2009 .

[8]  Yi Zhang,et al.  MODA: automated test generation for database applications via mock objects , 2010, ASE '10.

[9]  Sang-Won Lee,et al.  Backward inference and pruning for RDF change detection using RDBMS , 2013, J. Inf. Sci..

[10]  Rico Wind,et al.  Simple and realistic data generation , 2006, VLDB.

[11]  Mark A. Musen,et al.  Promptdiff: a fixed-point algorithm for comparing ontology versions , 2002, AAAI/IAAI.

[12]  Yann LeCun,et al.  Regularization of Neural Networks using DropConnect , 2013, ICML.

[13]  Meikel Pöss,et al.  MUDD: a multi-dimensional data generator , 2004, WOSP '04.

[14]  Symeon Papavassiliou,et al.  M2M Interactions Paradigm via Volunteer Computing and Mobile Crowdsensing , 2014 .

[15]  Yaling Pei,et al.  A Synthetic Data Generator for Clustering and Outlier Analysis , 2006 .

[16]  Vassilis Christophides,et al.  High-level change detection in RDF(S) KBs , 2013, TODS.

[17]  Tudor Groza,et al.  SemVersion: RDF-based ontology versioning system , 2006 .

[18]  B. Irwin,et al.  XML DIGITAL SIGNATURE AND RDF , 2005 .

[19]  Craig W. Thompson,et al.  A parallel general-purpose synthetic data generator , 2007, SGMD.

[20]  Geoffrey E. Hinton,et al.  Deep Boltzmann Machines , 2009, AISTATS.