Hybrid optical radio frequency airborne communications

Optical RF Communications Adjunct Program flight test results provide validation of the theoretical models and hybrid optical radio frequency (RF) airborne system concepts developed by the Defense Advanced Research Projects Agency and the U.S. Air Force Research Laboratory. Theoretical models of the free-space optical communications (FSOC), RF, and network components accurately predict the flight test results under a wide range of day and night operating conditions. The FSOC system, including the adaptive optics and optical modem, can operate under high turbulence conditions. The RF and network mechanisms of Layer 2 retransmission and failover provide increased reliability, reducing end-to-end packet error rates. Overall the test results show that stable, long-range FSOC is possible and practical for near-term operations.

[1]  David W. Young,et al.  Optical Automatic Gain Controller for High-Bandwidth Free-Space Optical Communication Links , 2011 .

[2]  Jeffrey H. Shapiro,et al.  Observations of Channel Reciprocity in Optical Free-Space Communications Experiments , 2011 .

[3]  Larry B. Stotts,et al.  Progress towards reliable free-space optical networks , 2011, 2011 - MILCOM 2011 Military Communications Conference.

[4]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[5]  William K. McIntire,et al.  Hybrid Optical RF Airborne Communications , 2009, Proceedings of the IEEE.

[6]  David Hughes,et al.  Optical communications in atmospheric turbulence , 2009, Optical Engineering + Applications.

[7]  Robert K. Tyson Introduction to Adaptive Optics , 2000 .

[8]  Robert K. Tyson,et al.  Field Guide to Adaptive Optics , 2012 .

[9]  Lai King Tee,et al.  Packet Error Rate and Latency Requirements for a Mobile Wireless Access System in an IP Network , 2007, 2007 IEEE 66th Vehicular Technology Conference.

[10]  F. Roddier,et al.  STELLAR CORONOGRAPH WITH PHASE MASK , 1997 .

[11]  Randall J. Alliss,et al.  SIMULATIONS OF OPTICAL TURBULENCE VIA NUMERICAL WEATHER PREDICTION FOR USE IN OPTICAL COMMUNICATION STUDIES , 2008 .

[12]  Paul Kolodzy,et al.  Free-space optical communications link budget estimation. , 2010, Applied optics.

[13]  Francois Roddier,et al.  Maximum Gain and Efficiency of Adaptive Optics Systems , 1998 .

[14]  Larry B. Stotts,et al.  Parameter Estimates For Free Space Optical Communications , 2011 .

[15]  Raymond M. Sova,et al.  Demonstration of High Data Rate Wavelength Division Multiplexed Transmission over a 150 km Free Space Optical Link , 2007, MILCOM 2007 - IEEE Military Communications Conference.

[16]  Raymond M. Sova,et al.  Long distance laser communications demonstration , 2007, SPIE Defense + Commercial Sensing.

[17]  L. Andrews Field guide to atmospheric optics , 2004 .