Finite fracture mechanics analysis using the scaled boundary finite element method

Abstract The polygon-based scaled boundary finite element method is applied to two finite fracture mechanics based failure criteria to predict the crack initiation from stress concentrations, i.e. notches and holes. The stress and displacement fields are modelled by the scaled boundary finite element method through semi-analytical expressions that resemble asymptotic expansions around cracks and notches. Important fracture parameters, i.e. energy release rate and stress, are accurately and conveniently computed from the solutions of stresses and displacements via analytical integration. One distinguished advantage of applying the scaled boundary finite element method to finite fracture mechanics is that the required changes in the mesh are easily accommodated by shifting the crack tip within the cracked polygon without changing the global mesh structure. The developed framework is validated using four numerical examples. The crack initiation predictions obtained from the scaled boundary finite element method agree well with the reference finite element results.

[1]  David Taylor,et al.  The fracture mechanics of finite crack extension , 2005 .

[2]  Wei Gao,et al.  Fracture analysis of piezoelectric materials using the scaled boundary finite element method , 2013 .

[3]  H. deLorenzi,et al.  On the energy release rate and the J-integral for 3-D crack configurations , 1982 .

[4]  F. Tin-Loi,et al.  Polygon scaled boundary finite elements for crack propagation modelling , 2012 .

[5]  D. Parks The virtual crack extension method for nonlinear material behavior , 1977 .

[6]  John P. Wolf,et al.  The scaled boundary finite-element method – a primer: solution procedures , 2000 .

[7]  D. M. Tracey,et al.  Finite elements for determination of crack tip elastic stress intensity factors , 1971 .

[8]  M. De Handbuch der Physik , 1957 .

[9]  Andrzej Seweryn,et al.  A non-local stress and strain energy release rate mixed mode fracture initiation and propagation criteria , 1998 .

[10]  Andrzej Seweryn,et al.  Verification of a non-local stress criterion for mixed mode fracture in wood , 2008 .

[11]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[12]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[13]  John R. Rice,et al.  ON THE RELATIONSHIP BETWEEN CRITICAL TENSILE STRESS AND FRACTURE TOUGHNESS IN MILD STEEL , 1973 .

[14]  Andrzej Seweryn,et al.  BRITTLE FRACTURE IN PLANE ELEMENTS WITH SHARP NOTCHES UNDER MIXED-MoDE LOADING , 1997 .

[15]  Zora Vrcelj,et al.  Evaluation of dynamic stress intensity factors and T-stress using the scaled boundary finite-element method , 2008 .

[16]  Christian Mittelstedt,et al.  Efficient computation of order and mode of three-dimensional stress singularities in linear elasticity by the boundary finite element method , 2006 .

[17]  P. Claydon Maximum energy release rate distribution from a generalized 3D virtual crack extension method , 1992 .

[18]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[19]  Zvi Hashin,et al.  Finite thermoelastic fracture criterion with application to laminate cracking analysis , 1996 .

[20]  Wilfried Becker,et al.  Modelling brittle crack formation at geometrical and material discontinuities using a finite fracture mechanics approach , 2010 .

[21]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[22]  F. Tin-Loi,et al.  Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique , 2013 .

[23]  Dominique Leguillon,et al.  Strength or toughness? A criterion for crack onset at a notch , 2002 .

[24]  Chongmin Song Analysis of singular stress fields at multi‐material corners under thermal loading , 2006 .

[25]  Wilfried Becker,et al.  Computation of 3-D stress singularities for multiple cracks and crack intersections by the scaled boundary finite element method , 2012, International Journal of Fracture.

[26]  Zohar Yosibash,et al.  A failure criterion for brittle elastic materials under mixed-mode loading , 2006 .

[27]  J. Wolf,et al.  A virtual work derivation of the scaled boundary finite-element method for elastostatics , 2002 .

[28]  F. J. Gómez,et al.  Fracture of components with V-shaped notches , 2003 .

[29]  Andrzej Seweryn,et al.  Verification of brittle fracture criteria for elements with V-shaped notches , 2002 .

[30]  Wilfried Becker,et al.  Numerical Analysis of Brittle Crack Initiation at Stress Concentrations in Composites , 2008 .

[31]  Andrzej Seweryn,et al.  Brittle fracture criterion for structures with sharp notches , 1994 .

[32]  R. Kriz,et al.  Stress intensity factors by enriched mixed finite elements , 1989 .

[33]  Zenon Mróz,et al.  A non-local stress failure condition for structural elements under multiaxial loading , 1995 .

[34]  Pietro Cornetti,et al.  A Finite Fracture Mechanics approach to V-notched elements subjected to mixed-mode loading , 2013 .

[35]  Eric Martin,et al.  Interface debonding ahead of a primary crack , 2000 .

[36]  Chongmin Song,et al.  Probabilistic fracture mechanics by using Monte Carlo simulation and the scaled boundary finite element method , 2011 .

[37]  Dominique Leguillon,et al.  A criterion for crack nucleation at a notch in homogeneous materials , 2001 .

[38]  Detlef Stolten,et al.  A hybrid method to assess interface debonding by finite fracture mechanics , 2006 .

[39]  F. Tin-Loi,et al.  Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements , 2012 .

[40]  Yao Koutsawa,et al.  An XFEM crack-tip enrichment for a crack terminating at a bi-material interface , 2013 .

[41]  Alberto Carpinteri,et al.  Finite fracture mechanics: A coupled stress and energy failure criterion , 2006 .

[42]  P. Tong,et al.  Singular finite elements for the fracture analysis of V‐notched plate , 1980 .

[43]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[44]  David Taylor,et al.  A finite fracture mechanics approach to structures with sharp V-notches , 2008 .