Quantile and tolerance-interval estimation in simulation

This paper discusses two sequential procedures to construct proportional half-width confidence intervals for a simulation estimator of the steady-state quantile and tolerance intervals for a stationary stochastic process having the (reasonable) property that the autocorrelation of the underlying process approaches zero with increasing lag. At each quantile to be estimated, the marginal cumulative distribution function must be absolutely continuous in some neighborhood of that quantile with a positive, continuous probability density function. These algorithms sequentially increase the simulation run length so that the quantile and tolerance-interval estimates satisfy pre-specified precision requirements. An experimental performance evaluation demonstrates the validity of these procedures.

[1]  John F. Shortle,et al.  Simulating M/G/1 queues with heavy-tailed service , 2002, Proceedings of the Winter Simulation Conference.

[2]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[3]  A. F. Seila,et al.  A Batching Approach to Quantile Estimation in Regenerative Simulations , 1982 .

[4]  Andrew F. Seila,et al.  Estimation of percentiles in discrete event simulation , 1982 .

[5]  Donald L. Iglehart,et al.  Simulating Stable Stochastic Systems, VI: Quantile Estimation , 1976, JACM.

[6]  B. Nelson,et al.  Control Variates for Probability and Quantile Estimation , 1998 .

[7]  W. David Kelton,et al.  Simulation-based estimation of quantiles , 1999, WSC '99.

[8]  Imrich Chlamtac,et al.  The P2 algorithm for dynamic calculation of quantiles and histograms without storing observations , 1985, CACM.

[9]  Kimmo E. E. Raatikainen,et al.  Sequential procedure for simultaneous estimation of several percentiles , 1990 .

[10]  Robert V. Hogg,et al.  Introduction to Mathematical Statistics. , 1966 .

[11]  Barry L. Nelson,et al.  Control variates for quantile estimation , 1990 .

[12]  Philip Heidelberger,et al.  Quantile Estimation in Dependent Sequences , 1984, Oper. Res..

[13]  P. Sen On the Bahadur representation of sample quantiles for sequences of φ-mixing random variables , 1972 .

[14]  V. Zwet Convex transformations of random variables , 1965 .

[15]  Kimmo E. E. Raatikainen,et al.  Simultaneous estimation of several percentiles , 1987, Simul..

[16]  James R. Wilson,et al.  Correlation-Induction Techniques for Estimating Quantiles in Simulation Experiments , 1998, Oper. Res..

[17]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[18]  W. David Kelton,et al.  Determining simulation run length with the runs test , 2003, Simul. Model. Pract. Theory.

[19]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .