Bacillus thuringiensis and Its Pesticidal Crystal Proteins

SUMMARY During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism’s pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit.

[1]  N. Crickmore,et al.  Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Proteins , 1998, Microbiology and Molecular Biology Reviews.

[2]  H. Kaplan,et al.  Role of DNA in the Activation of the Cry1A Insecticidal Crystal Protein from Bacillus thuringiensis * , 1998, The Journal of Biological Chemistry.

[3]  H. Agaisse,et al.  Bacillus popilliae cry18Aa operon is transcribed by σE and σK forms of RNA polymerase from a single initiation site , 1998 .

[4]  D. Dean,et al.  Bacillus thuringiensis insecticidal proteins: molecular mode of action. , 1998, Progress in nucleic acid research and molecular biology.

[5]  H. Agaisse,et al.  Bacillus popilliae cry18Aa operon is transcribed by sigmaE and sigmaK forms of RNA polymerase from a single initiation site. , 1998, Nucleic acids research.

[6]  F. Gould Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. , 1998, Annual review of entomology.

[7]  Y. Shai,et al.  Bacillus thuringiensis cytolytic toxin associates specifically with its synthetic helices A and C in the membrane bound state. Implications for the assembly of oligomeric transmembrane pores. , 1997, Biochemistry.

[8]  T. Malvar,et al.  Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P. Butko,et al.  Interaction of the delta-endotoxin CytA from Bacillus thuringiensis var. israelensis with lipid membranes. , 1997, Biochemistry.

[10]  Single-site mutations in the conserved alternating-arginine region affect ionic channels formed by CryIAa, a Bacillus thuringiensis toxin , 1997, Applied and environmental microbiology.

[11]  R. Beeman,et al.  Proteinase-mediated Insect Resistance to Bacillus thuringiensis Toxins* , 1997, The Journal of Biological Chemistry.

[12]  X. Soberón,et al.  Isolated domain II and III from the Bacillus thuringiensis CrylAb δ‐endotoxin binds to lepidopteran midgut membranes , 1997, FEBS letters.

[13]  S. Jansens,et al.  Transgenic corn expressing a Cry9C insecticidal protein from Bacillus thuringiensis protected from European corn borer damage , 1997 .

[14]  P. Denolf,et al.  Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. , 1997, European journal of biochemistry.

[15]  L. Bulla,et al.  Ligand specificity and affinity of BT-R1, the Bacillus thuringiensis Cry1A toxin receptor from Manduca sexta, expressed in mammalian and insect cell cultures , 1997, Applied and environmental microbiology.

[16]  M. Adang,et al.  The heliothis virescens 170 kDa aminopeptidase functions as "receptor A" by mediating specific Bacillus thuringiensis Cry1A delta-endotoxin binding and pore formation. , 1997, Insect biochemistry and molecular biology.

[17]  D. Lereclus,et al.  Inheritance of Resistance to the Bacillus thuringiensis CrylC Toxin in Spodoptera littoralis (Lepidoptera: Noctuidae) , 1997 .

[18]  J. Mahillon,et al.  Diversity and differential distribution of IS231, IS232 and IS240 among Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides. , 1997, Microbiology.

[19]  C. N. Stewart,et al.  Increased fitness of transgenic insecticidal rapeseed under insect selection pressure , 1997 .

[20]  E. Dervyn,et al.  Spo0A represses transcription of the cry toxin genes in Bacillus thuringiensis. , 1997, Microbiology.

[21]  J. Schwartz,et al.  Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors , 1997, FEBS letters.

[22]  D. Ellar,et al.  Intramolecular Proteolytic Cleavage ofBacillus thuringiensisCry3A δ-Endotoxin May Facilitate Its Coleopteran Toxicity , 1997 .

[23]  H. D. Burges,et al.  Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insect pests , 1997 .

[24]  P. Robeff,et al.  Biochemical and molecular characterization of the insecticidal fragment of CryV , 1997, Applied and environmental microbiology.

[25]  J. Schwartz,et al.  Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering , 1997, FEBS letters.

[26]  A. Valaitis Interaction analyses of Bacillus thuringiensis Cry1A toxins with two aminopeptidases from gypsy moth midgut brush border membranes , 1997 .

[27]  L. Bulla,et al.  Further characterization of BT-R1, the cadherin-like receptor for Cry1Ab toxin in tobacco hornworm (Manduca sexta) midguts. , 1997, Insect biochemistry and molecular biology.

[28]  B. Tabashnik,et al.  Inheritance of Resistance to the Bacillus thuringiensis Toxin Cry1C in the Diamondback Moth , 1997, Applied and environmental microbiology.

[29]  R. Sato,et al.  Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis Cry1Aa toxin. , 1997, European journal of biochemistry.

[30]  Juliet D. Tang,et al.  Inheritance, Stability, and Lack-of-Fitness Costs of Field-Selected Resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae) from Florida , 1997 .

[31]  M. Rosso,et al.  Distribution of the Insertion Element IS240 Among Bacillus thuringiensis Strains , 1997, Current Microbiology.

[32]  W. Donovan,et al.  Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein , 1997, Applied and environmental microbiology.

[33]  M. Peferoen Progress and prospects for field use of bt genes in crops , 1997 .

[34]  D. Ellar,et al.  Analysis of the large aqueous pores produced by a Bacillus thuringiensis protein insecticide in Manduca sexta midgut-brush-border-membrane vesicles. , 1997, European journal of biochemistry.

[35]  D. Ellar,et al.  Identification of two sequence elements associated with the gene encoding the 24-kDa crystalline component in Bacillus thuringiensis ssp. fukuokaensis: an example of transposable element archaeology. , 1997, Plasmid.

[36]  A. Bravo Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains , 1997, Journal of bacteriology.

[37]  D. Wright,et al.  A Change in a Single Midgut Receptor in the Diamondback Moth (Plutella xylostella) Is Only in Part Responsible for Field Resistance to Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai , 1997, Applied and environmental microbiology.

[38]  B. Tabashnik,et al.  Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[39]  J. E. Ream,et al.  Soil inactivation of the Bacillus thuringiensis subsp. kurstaki CryIIA insecticidal protein within transgenic cotton tissue : Laboratory microcosm and field studies , 1997 .

[40]  Andrew K. Jones,et al.  Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Whalon,et al.  Fitness Costs of Resistance to Bacillus thuringiensis in Colorado Potato Beetle (Coleoptera: Chrysomelidae) , 1997 .

[42]  J. Chaufaux,et al.  Recherche de souches naturelles du Bacillus thuringiensis dans différents biotopes, à travers le monde , 1997 .

[43]  M. Cohen,et al.  Determination of Binding of Bacillus thuringiensis (delta)-Endotoxin Receptors to Rice Stem Borer Midguts , 1997, Applied and environmental microbiology.

[44]  C. Lesieur,et al.  Membrane insertion: The strategies of toxins (review). , 1997, Molecular membrane biology.

[45]  A. Basu,et al.  Transgenic elite indica rice plants expressing CryIAc delta-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[46]  L. Masson,et al.  One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Karen Heroux,et al.  Chemotaxonomic differentiation between the Bacillus cereus group and Bacillus subtilis by phospholipid extracts analyzed with electrospray ionization tandem mass spectrometry , 1997 .

[48]  G. Georghiou,et al.  Influence of Exposure to Single versus Multiple Toxins of Bacillus thuringiensis subsp. israelensis on Development of Resistance in the Mosquito Culex quinquefasciatus (Diptera: Culicidae) , 1997, Applied and environmental microbiology.

[49]  M. Adang,et al.  Binding of Bacillus thuringiensis Cry1Ac Toxin to Aminopeptidase in Susceptible and Resistant Diamondback Moths (Plutella xylostella) , 1997, Applied and environmental microbiology.

[50]  R. Liddington,et al.  Crystal structure of the anthrax toxin protective antigen , 1997, Nature.

[51]  D. Heckel,et al.  Identification of a linkage group with a major effect on resistance to Bacillus thuringiensis Cry1Ac endotoxin in the tobacco budworm (Lepidoptera: Noctuidae) , 1997 .

[52]  M. Koziel,et al.  The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects , 1997, Applied and environmental microbiology.

[53]  H. Agaisse,et al.  A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains , 1997, Applied and environmental microbiology.

[54]  M. Koziel,et al.  Transgenic plants: An emerging approach to pest control , 1997, Nature Biotechnology.

[55]  Juliet D. Tang,et al.  Comparison of Leaf-Dip and Diet Bioassays for Monitoring Bacillus thuringiensis Resistance in Field Populations of Diamondback Moth (Lepidoptera: Plutellidae) , 1997 .

[56]  Anthony M. Shelton,et al.  Resistance of Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis Berliner in Central America , 1997 .

[57]  M Hugh-Jones,et al.  Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers , 1997, Journal of bacteriology.

[58]  F. Ortego,et al.  Characterization and distribution of chymotrypsin‐like and other digestive proteases in Colorado potato beetle larvae , 1997 .

[59]  J. Van Damme,et al.  Intramolecular proteolytic cleavage of Bacillus thuringiensis Cry3A delta-endotoxin may facilitate its coleopteran toxicity. , 1997, Journal of invertebrate pathology.

[60]  R. Beumer,et al.  Discrimination between Bacillus cereus and Bacillus thuringiensis using specific DNA probes based on variable regions of 16S rRNA. , 1997, FEMS microbiology letters.

[61]  O. Alzate,et al.  Protein engineering of Bacillus thuringiensis delta-endotoxin: mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Baum,et al.  Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system , 1996, Applied and environmental microbiology.

[63]  A. Aronson,et al.  Altered binding of the Cry1Ac toxin to larval membranes but not to the toxin-binding protein in Plodia interpunctella selected for resistance to different Bacillus thuringiensis isolates , 1996, Applied and environmental microbiology.

[64]  F. Gould,et al.  Mutations at Domain II, Loop 3, of Bacillus thuringiensis CryIAa and CryIAb δ-Endotoxins Suggest Loop 3 Is Involved in Initial Binding to Lepidopteran Midguts* , 1996, The Journal of Biological Chemistry.

[65]  D. Andow,et al.  Response: Evolution of Insect Resistance to Bacillus thuringiensis—Transformed Plants , 1996, Science.

[66]  D. Wright,et al.  Evidence for Resistance to Bacillus thuringiensis (Bt) subsp. kurstaki HD-1, Bt subsp. aizawai and Abamectin in Field Populations of Plutella xylostella from Malaysia , 1996 .

[67]  M. Adang,et al.  A 106 kDa form of aminopeptidase is a receptor for Bacillus thuringiensis CryIC δ-endotoxin in the brush border membrane of Manduca sexta , 1996, Insect Biochemistry and Molecular Biology.

[68]  K. Nickerson,et al.  The Bacillus thuringiensis insecticidal toxin binds biotin-containing proteins , 1996, Applied and environmental microbiology.

[69]  W. Stiekema,et al.  Different domains of Bacillus thuringiensis delta-endotoxins can bind to insect midgut membrane proteins on ligand blots , 1996, Applied and environmental microbiology.

[70]  D. Bosch,et al.  Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins , 1996, Applied and environmental microbiology.

[71]  D. Lereclus,et al.  Spodoptera littoralis (Lepidoptera: Noctuidae) Resistance to CryIC and Cross-Resistance to Other Bacillus thuringiensis Crystal Toxins , 1996 .

[72]  B. Tabashnik,et al.  Field-evolved resistance to Bacillus thuringiensis toxin CryIC in diamondback moth (Lepidoptera: Plutellidae) , 1996 .

[73]  H. Agaisse,et al.  Genetic analysis of cryIIIA gene expression in Bacillus thuringiensis. , 1996, Microbiology.

[74]  J. Ferré,et al.  Bacillus thuringiensis crystal proteins CRY1Ab and CRY1Fa share a high affinity binding site in Plutella xylostella (L.). , 1996, Biochemical and biophysical research communications.

[75]  H. Agaisse,et al.  Construction of new insecticidal Bacillus thuringiensis recombinant strains by using the sporulation non-dependent expression system of cryIIIA and a site specific recombination vector. , 1996, Journal of biotechnology.

[76]  A. Pang,et al.  Immunocytochemical localization of Bacillus thuringiensis Cryl toxins in the midguts of three forest insects and Bombyx mori , 1996 .

[77]  C. Carlson,et al.  Genomic organization of the entomopathogenic bacterium Bacillus thuringiensis subsp. berliner 1715 , 1996 .

[78]  Vivek Sharma,et al.  A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism fold , 1996, Nature Structural Biology.

[79]  DONOVAN E. Johnson,et al.  Contribution of Bacillus thuringiensis Spores to Toxicity of Purified Cry Proteins Towards Indianmeal Moth Larvae , 1996, Current Microbiology.

[80]  D. Smedley,et al.  Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion. , 1996, Microbiology.

[81]  L. Holden,et al.  Insect bioassay for determining soil degradation of Bacillus thuringiensis subsp. kurstaki CryIA(b) protein in corn tissue , 1996 .

[82]  L. Nicolas,et al.  Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentans subsp. malaysia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis delta-endotoxins , 1996, Journal of bacteriology.

[83]  M. Koziel,et al.  Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[84]  H. Agaisse,et al.  STAB‐SD: a Shine–Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability , 1996, Molecular microbiology.

[85]  Hilde,et al.  Domain III substitution in Bacillus thuringiensis delta-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition , 1996, Applied and environmental microbiology.

[86]  M. Whalon,et al.  Feeding Behavior of CryIIIA-Resistant and Susceptible Colorado Potato Beetle (Coleopera: Chrysomelidae) Larvae on Bacillus thuringiensis tenebrionis-Transonic CryIIIA-Treated and Untreated Potato Foliage , 1996 .

[87]  M. Koziel,et al.  Cloning of a cryV-type insecticidal protein gene from Bacillus thuringiensis: the cryV-encoded protein is expressed early in stationary phase , 1996, Journal of bacteriology.

[88]  H. Agaisse,et al.  Analysis of cryIAa expression in sigE and sigK mutants of Bacillus thuringiensis , 1996, Molecular and General Genetics MGG.

[89]  D. Dean,et al.  Inconsistencies in determining Bacillus thuringiensis toxin binding sites relationship by comparing competition assays with ligand blotting. , 1996, Biochemical and biophysical research communications.

[90]  D. Ellar,et al.  Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. , 1996, Journal of molecular biology.

[91]  F. Gould,et al.  Role of Domain II, Loop 2 Residues of Bacillus thuringiensis CryIAb δ-Endotoxin in Reversible and Irreversible Binding to Manduca sexta and Heliothis virescens(*) , 1996, The Journal of Biological Chemistry.

[92]  D. Dean,et al.  Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIA delta-endotoxin. , 1996, Journal of molecular biology.

[93]  G. P. Smith,et al.  Mosquitocidal activity of the CryIC delta-endotoxin from Bacillus thuringiensis subsp. aizawai , 1996, Applied and environmental microbiology.

[94]  D. Dean,et al.  Synergistic effect of the Bacillus thuringiensis toxins CryIAa and CryIAc on the gypsy moth, Lymantria dispar , 1996, Applied and environmental microbiology.

[95]  A. Shelton,et al.  Toxicity of Bacillus thuringiensis Spore and Crystal Protein to Resistant Diamondback Moth (Plutella xylostella) , 1996, Applied and environmental microbiology.

[96]  J A Wells,et al.  Binding in the growth hormone receptor complex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[97]  C. Decock,et al.  A Bacillus thuringiensis insecticidal crystal protein with a high activity against members of the family Noctuidae , 1996, Applied and environmental microbiology.

[98]  M. G. Wolfersberger,et al.  Site-directed mutations in the third domain of Bacillus thuringiensis delta-endotoxin CryIAa affect its ability to increase the permeability of Bombyx mori midgut brush border membrane vesicles , 1996, Applied and environmental microbiology.

[99]  A. Ives,et al.  Erratum: Evolution of insect resistance to Bacillus thuringiensis- transformed plants (Science (1311)) , 1996 .

[100]  E. Alcácer,et al.  DIFFERENCES IN THE MIDGUT PROTEOLYTIC ACTIVITY OF TWO HELIOTHIS VIRESCENS STRAINS, ONE SUSCEPTIBLE AND ONE RESISTANT TO BACILLUS THURINGIENSIS TOXINS , 1996 .

[101]  K. Morikawa,et al.  The β-prism: a new folding motif , 1996 .

[102]  D. Nierlich,et al.  The decay of bacterial messenger RNA. , 1996, Progress in Nucleic Acid Research and Molecular Biology.

[103]  A. Delécluse,et al.  Characterization of Six Highly Mosquitocidal Bacillus thuringiensis Strains That Do Not Belong to H-14 Serotype , 1996, Current Microbiology.

[104]  J. Schwartz,et al.  Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. , 1995, Journal of molecular biology.

[105]  D. Dean,et al.  Synergism between CryIA insecticidal crystal proteins and spores of Bacillus thuringiensis, other bacterial spores, and vegetative cells against Lymantria dispar (Lepidoptera: Lymantriidae) larvae , 1995 .

[106]  F. Gould,et al.  Selection and Genetic Analysis of a Heliothis virescens (Lepidoptera: Noctuidae) Strain with High Levels of Resistance to Bacillus thuringiensis Toxins , 1995 .

[107]  M. Rosso,et al.  Cloning and expression of a novel toxin gene from Bacillus thuringiensis subsp. jegathesan encoding a highly mosquitocidal protein , 1995, Applied and environmental microbiology.

[108]  A. Valaitis,et al.  Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) delta-endotoxin of Bacillus thuringiensis. , 1995, Insect biochemistry and molecular biology.

[109]  D. Dean,et al.  Domain III exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors. , 1995, Biochemical and biophysical research communications.

[110]  H. Agaisse,et al.  How does Bacillus thuringiensis produce so much insecticidal crystal protein? , 1995, Journal of bacteriology.

[111]  F. Gould,et al.  Resistance to Bacillus thuringiensis CryIA delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration , 1995, Applied and environmental microbiology.

[112]  Smita S. Patel,et al.  Irreversible Binding Kinetics of Bacillus thuringiensis CryIA δ-Endotoxins to Gypsy Moth Brush Border Membrane Vesicles Is Directly Correlated to Toxicity (*) , 1995, The Journal of Biological Chemistry.

[113]  T. Malvar,et al.  Regulation of insecticidal crystal protein production in Bacillus thuringiensis , 1995, Molecular microbiology.

[114]  M. Adang,et al.  The CryIA(c) Receptor Purified from Manduca sexta Displays Multiple Specificities (*) , 1995, The Journal of Biological Chemistry.

[115]  J. Williams,et al.  Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis , 1995 .

[116]  R. Leister,et al.  Field performance of Clavibacter xyli subsp. cynodontis expressing the insecticidal protein gene cryIA(c) of Bacillus thuringiensis against European corn borer in field corn. , 1995 .

[117]  G. Rapoport,et al.  Evaluation of Synergistic Interactions among the CryIVA, CryIVB, and CryIVD Toxic Components of B. thuringiensis subsp. israelensis Crystals , 1995 .

[118]  T. Yamamoto,et al.  Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes , 1995, Applied and environmental microbiology.

[119]  B. H. Knowles,et al.  Molecular Cloning of an Insect Aminopeptidase N That Serves as a Receptor for Bacillus thuringiensis CryIA(c) Toxin (*) , 1995, The Journal of Biological Chemistry.

[120]  B. Tabashnik,et al.  Immunohistochemical detection of binding of CryIA crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella (L.) from Hawaii. , 1995, Biochemical and biophysical research communications.

[121]  M. Wells,et al.  Purification, characterization and cDNA sequence of an alkaline chymotrypsin from the midgut of Manduca sexta. , 1995, Insect biochemistry and molecular biology.

[122]  A. Aronson,et al.  Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene , 1995, Journal of bacteriology.

[123]  D. Andow,et al.  Managing the Evolution of Insect Resistance to Transgenic Plants , 1995, Science.

[124]  M. Whalon,et al.  Managing pest resistance to Bacillus thuringiensis endotoxins : constraints and incentives to implementation , 1995 .

[125]  D. Bosch,et al.  Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) , 1995, Applied and environmental microbiology.

[126]  L. Masson,et al.  Kinetics of Bacillus thuringiensis Toxin Binding with Brush Border Membrane Vesicles from Susceptible and Resistant Larvae of Plutella xylostella(*) , 1995, The Journal of Biological Chemistry.

[127]  M. G. Wolfersberger Permeability ofBacillus thuringiensisCryI Toxin Channels , 1995 .

[128]  M. Himeno,et al.  Mode of Action of δ-Endotoxin fromBacillus thuringiensisvar.aizawai , 1995 .

[129]  J. Clark Molecular action of insecticides on ion channels. , 1995 .

[130]  X. J. Chen,et al.  Single amino acid changes in domain II of Bacillus thuringiensis CryIAb delta-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles , 1995, Journal of bacteriology.

[131]  E. Dervyn,et al.  Transcriptional regulation of the cryIVD gene operon from Bacillus thuringiensis subsp. israelensis , 1995, Journal of bacteriology.

[132]  J. Charles,et al.  In vitro binding of Bacillus thuringiensis var. israelensis individual toxins to midgut cells of Anopheles gambiae larvae (Diptera: Culicidae) , 1995, FEBS letters.

[133]  X. J. Chen,et al.  Mutations in Domain I of Bacillus thuringiensis -Endotoxin CryIAb Reduce the Irreversible Binding of Toxin to Manduca sexta Brush Border Membrane Vesicles (*) , 1995, The Journal of Biological Chemistry.

[134]  R. Vadlamudi,et al.  Cloning and Expression of a Receptor for an Insecticidal Toxin of Bacillus thuringiensis(*) , 1995, The Journal of Biological Chemistry.

[135]  A. Bravo,et al.  δ‐Endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar lipid bilayers , 1995 .

[136]  J. Gatehouse,et al.  Protease activities in the larval midgut of Heliothis virescens: Evidence for trypsin and chymotrypsin-like enzymes , 1995 .

[137]  K. Ihara,et al.  Expression of the genes for insecticidal crystal proteins in Bacillus thuringiensis: cryIVA, not cryIVB, is transcribed by RNA polymerase containing σH and that containing σE , 1995 .

[138]  H. Masaki,et al.  Transfer of an insecticidal protein gene ofBacillus thuringiensis into plant-colonizingAzospirillum , 1995, World journal of microbiology & biotechnology.

[139]  S. Fields,et al.  Protein-protein interactions: methods for detection and analysis , 1995, Microbiological reviews.

[140]  H. Preisler,et al.  Natural Variation: A Complicating Factor in Bioassays with Chemical and Microbial Pesticides , 1995 .

[141]  Thompson Ma,et al.  Structure, function and engineering of Bacillus thuringiensis toxins. , 1995 .

[142]  D. Dean,et al.  Quantification of the effect of Bacillus thuringiensis toxins on short-circuit current in the midgut of Bombyx mori , 1995 .

[143]  I. Kwak,et al.  Exploration of receptor binding of Bacillus thuringiensis toxins. , 1995, Memorias do Instituto Oswaldo Cruz.

[144]  K. Ihara,et al.  Expression of the genes for insecticidal crystal proteins in Bacillus thuringiensis: cryIVA, not cryIVB, is transcribed by RNA polymerase containing sigma H and that containing sigma E. , 1995, FEMS microbiology letters.

[145]  Y. Shai,et al.  The assembly and organization of the alpha 5 and alpha 7 helices from the pore-forming domain of Bacillus thuringiensis delta-endotoxin. Relevance to a functional model. , 1995, The Journal of biological chemistry.

[146]  M. G. Wolfersberger,et al.  Bacillus thuringiensis delta-endotoxin and larval Manduca sexta midgut brush-border membrane vesicles act synergistically to cause very large increases in the conductance of planar lipid bilayers. , 1995, The Journal of experimental biology.

[147]  H. E. Schnepf,et al.  Structure, function and engineering of Bacillus thuringiensis toxins. , 1995, Genetic engineering.

[148]  D. Stalker,et al.  Amplification of a Chimeric Bacillus Gene in Chloroplasts Leads to an Extraordinary Level of an Insecticidal Protein in Tobacco , 1995, Bio/Technology.

[149]  H. Agaisse,et al.  Overproduction of Encapsulated Insecticidal Crystal Proteins in a Bacillus thuringiensis spoOA Mutant , 1995, Bio/Technology.

[150]  L. Masson,et al.  Specificity domain localization of Bacillus thuringiensis insecticidal toxins is highly dependent on the bioassay system , 1994, Molecular microbiology.

[151]  J. Handelsman,et al.  Zwittermicin A-producing strains of Bacillus cereus from diverse soils , 1994, Applied and environmental microbiology.

[152]  A. Yool Block of the inactivating potassium channel by clofilium and hydroxylamine depends on the sequence of the pore region. , 1994, Molecular pharmacology.

[153]  L. F. Adams,et al.  Elucidation of the mechanism of CryIIIA overproduction in a mutagenized strain of Bacillus thuringiensis var. tenebrionis , 1994, Molecular microbiology.

[154]  J. Ferré,et al.  Binding of Insecticidal Crystal Proteins of Bacillus thuringiensis to the Midgut Brush Border of the Cabbage Looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), and Selection for Resistance to One of the Crystal Proteins , 1994, Applied and environmental microbiology.

[155]  S. Slatin,et al.  Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIB2 and CryIIIB2 domain I peptide , 1994, Applied and environmental microbiology.

[156]  Phyllis A. W. Martin,et al.  Comparison of Disulfide Contents and Solubility at Alkaline pH of Insecticidal and Noninsecticidal Bacillus thuringiensis Protein Crystals , 1994, Applied and environmental microbiology.

[157]  D. Eisenberg,et al.  Dynamic transitions of the transmembrane domain of diphtheria toxin: disulfide trapping and fluorescence proximity studies. , 1994, Biochemistry.

[158]  D. Dean,et al.  Identification of amino acid residues of Bacillus thuringiensis delta-endotoxin CryIAa associated with membrane binding and toxicity to Bombyx mori , 1994, Journal of bacteriology.

[159]  Jeffrey J. Johnson,et al.  Synergism of mosquitocidal toxicity between CytA and CrylVD proteins using inclusions produced from cloned genes of Bacillus thuringiensis , 1994, Molecular microbiology.

[160]  G. P. Smith,et al.  Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis CryIC delta-endotoxin affects insecticidal specificity. , 1994, The Biochemical journal.

[161]  W. Stiekema,et al.  Recombinant Bacillus thuringiensis Crystal Proteins with New Properties: Possibilities for Resistance Management , 1994, Bio/Technology.

[162]  T. Malvar,et al.  Tn5401 disruption of the spo0F gene, identified by direct chromosomal sequencing, results in CryIIIA overproduction in Bacillus thuringiensis , 1994, Journal of bacteriology.

[163]  H. Agaisse,et al.  Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant , 1994, Journal of bacteriology.

[164]  T. Malvar,et al.  Overexpression of Bacillus thuringiensis HknA, a histidine protein kinase homology, bypasses early Spo mutations that result in CryIIIA overproduction , 1994, Journal of bacteriology.

[165]  W. Becktel,et al.  pH-induced conformational transitions of Cry IA(a), Cry IA(c), and Cry IIIA delta-endotoxins in Bacillus thuringiensis. , 1994, Biochemistry.

[166]  H. Agaisse,et al.  Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis , 1994, Molecular microbiology.

[167]  K. Chak,et al.  Expression of the crystal protein gene under the control of the alpha-amylase promoter in Bacillus thuringiensis strains , 1994, Applied and environmental microbiology.

[168]  G. P. Smith,et al.  Nucleotide sequence and analysis of an insertion sequence from Bacillus thuringiensis related to IS150. , 1994, Plasmid.

[169]  D. Johnson,et al.  Influence of Crystal Protein Composition of Bacillus thuringiensis Strains on Cross-Resistance in Indianmeal Moths (Lepidoptera: Pyralidae) , 1994 .

[170]  C. Carlson,et al.  Genotypic Diversity among Bacillus cereus and Bacillus thuringiensis Strains , 1994, Applied and environmental microbiology.

[171]  M. Adang,et al.  Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[172]  J. Baum Tn5401, a new class II transposable element from Bacillus thuringiensis , 1994, Journal of bacteriology.

[173]  D. Ellar,et al.  Structural and functional studies of a synthetic peptide mimicking a proposed membrane inserting region of a Bacillus thuringiensis δ-endotoxin , 1994 .

[174]  F. S. Walters,et al.  A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+ efflux in vitro. , 1994, The Journal of biological chemistry.

[175]  M. Parker,et al.  Uncoupled steps of the colicin A pore formation demonstrated by disulfide bond engineering. , 1994, The Journal of biological chemistry.

[176]  G. Rapoport,et al.  Transfer and expression of the cryIVB and cryIVD genes of Bacillus thuringiensis subsp. israelensis in Bacillus sphaericus 2297 , 1994 .

[177]  Peter Kämpfer,et al.  Limits and Possibilities of Total Fatty Acid Analysis for Classification and Identification of Bacillus Species , 1994 .

[178]  K. Kramer,et al.  Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. , 1994, Biochemical and biophysical research communications.

[179]  J. T. Turner,et al.  Integrative Cloning, Expression, and Stability of the cryIA(c) Gene from Bacillus thuringiensis subsp. kurstaki in a Recombinant Strain of Clavibacter xyli subsp. cynodontis , 1994, Applied and environmental microbiology.

[180]  P. Knight,et al.  The receptor for Bacillus thuringiensis CrylA(c) delta‐endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N , 1994, Molecular microbiology.

[181]  F. Gadani,et al.  Isolation of Bacillus thuringiensis from Stored Tobacco and Lasioderma serricorne (F.) , 1994, Applied and environmental microbiology.

[182]  R. Shenbagarathai,et al.  Introduction of a Lepidopteran-Specific Insecticidal Crystal Protein Gene of Bacillus thuringiensis subsp. kurstaki by Conjugal Transfer into a Bacillus megaterium Strain That Persists in the Cotton Phyllosphere , 1994, Applied and environmental microbiology.

[183]  B. Tabashnik,et al.  Evolution of Resistance to Bacillus Thuringiensis , 1994 .

[184]  J. Ferré,et al.  Lack of cross‐resistance to other Bacillus thuringiensis crystal proteins in a population of Plutella xylostella highly resistant to cryia(b) , 1994 .

[185]  BACILLUS THURINGIENSIS d-ENDOTOXIN AND LARVAL MANDUCA SEXTA MIDGUT BRUSH-BORDER MEMBRANE VESICLES ACT SYNERGISTICALLY TO CAUSE VERY LARGE INCREASES IN THE CONDUCTANCE OF PLANAR LIPID BILAYERS , 1994 .

[186]  Fred Gould,et al.  Potential and problems with high‐dose strategies for pesticidal engineered crops , 1994 .

[187]  S. Inagaki,et al.  Enhancement of δ-Endotoxin Activity by Toxin-Free Spore of Bacillus thuringiensis against the Diamondback Moth, Plutella xylostella , 1994 .

[188]  N. Forrester Resistance management options for conventional Bacillus thuringiensis and transgenic plants in Australian summer field crops , 1994 .

[189]  Richard T. Roush,et al.  Managing pests and their resistance to Bacillus thuringiensis: Can transgenic crops be better than sprays? , 1994 .

[190]  M. Whalon,et al.  Bacillus thuringiensis resistant colorado potato beetle and transgenic plants: Some operational and ecological implications for deployment , 1994 .

[191]  B. H. Knowles Mechanism of Action of Bacillus thuringiensis Insecticidal δ-Endotoxins , 1994 .

[192]  G. Bowen,et al.  Improving plant productivity with rhizosphere bacteria , 1994 .

[193]  D. Ellar,et al.  Biochemical characterization of Bacillus thuringiensis cytolytic delta-endotoxins. , 1994, Microbiology.

[194]  D. Ellar,et al.  Structural and functional studies of a synthetic peptide mimicking a proposed membrane inserting region of a Bacillus thuringiensis delta-endotoxin. , 1994, Molecular membrane biology.

[195]  Yoshisue Hajime,et al.  Identification of a promoter for the crystal protein-encoding gene cryIVB from Bacillus thuringiensis subsp. israelensis , 1993 .

[196]  A. Lövgren,et al.  Characterization of an avirulent pleiotropic mutant of the insect pathogen Bacillus thuringiensis: reduced expression of flagellin and phospholipases , 1993, Infection and immunity.

[197]  K. Brown,et al.  Transcriptional regulation of the Bacillus thuringiensis subsp. thompsoni crystal protein gene operon , 1993, Journal of bacteriology.

[198]  Y. Shai,et al.  Structural characterization, membrane interaction, and specific assembly within phospholipid membranes of hydrophobic segments from Bacillus thuringiensis var. israelensis cytolytic toxin. , 1993, Biochemistry.

[199]  Y. Ziniu,et al.  Identification of a cryptic gene associated with an insertion sequence not previously identified in Bacillus thuringiensis. , 1993, FEMS microbiology letters.

[200]  L. Masson,et al.  Toxicity of Activated Cryl Proteins from Bacillus thuringiensis to Six Forest Lepidoptera and Bombyx mori , 1993 .

[201]  J. Addison Persistence and nontarget effects of Bacillus thuringiensis in soil: a review , 1993 .

[202]  G. Rapoport,et al.  Expression of cryIVA and cryIVB Genes, Independently or in Combination, in a Crystal-Negative Strain of Bacillus thuringiensis subsp. israelensis , 1993, Applied and environmental microbiology.

[203]  G. Rapoport,et al.  Role of the CryIVD polypeptide in the overall toxicity of Bacillus thuringiensis subsp. israelensis , 1993, Applied and environmental microbiology.

[204]  F. S. Walters,et al.  Ion channel activity of N-terminal fragments from CryIA(c) delta-endotoxin. , 1993, Biochemical and biophysical research communications.

[205]  X. J. Chen,et al.  Site-directed mutations in a highly conserved region of Bacillus thuringiensis delta-endotoxin affect inhibition of short circuit current across Bombyx mori midguts. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[206]  M. Parker,et al.  Rendering a membrane protein soluble in water: a common packing motif in bacterial protein toxins. , 1993, Trends in biochemical sciences.

[207]  R. Rezsohazy,et al.  IS231V and W from Bacillus thuringiensis subsp. israelensis, two distant members of the IS231 family of insertion sequences. , 1993, Plasmid.

[208]  H. Kaplan,et al.  Purification and characterization of a trypsin-like digestive enzyme from spruce budworm (Choristoneura fumiferana) responsible for the activation of delta-endotoxin from Bacillus thuringiensis. , 1993, Insect biochemistry and molecular biology.

[209]  J. Mahillon,et al.  The IS4 family of insertion sequences: evidence for a conserved transposase motif , 1993, Molecular microbiology.

[210]  B. Tabashnik,et al.  Resistance to Bacillus thuringiensis Affects Mating Success of the Diamondback Moth (Lepidoptera: Plutellidae) , 1993 .

[211]  N. Crickmore,et al.  Effects on toxicity of eliminating a cleavage site in a predicted interhelical loop in Bacillus thuringiensis CryIVB delta-endotoxin. , 1993, FEMS microbiology letters.

[212]  J. R. Coleman,et al.  Effect of promoter modification on mosquitocidal cryIVB gene expression in Synechococcus sp. strain PCC 7942 , 1993, Applied and environmental microbiology.

[213]  J. Dow,et al.  The crystal δ‐endotoxins of Bacillus thuringiensis: Models for their mechanism of action on the insect gut , 1993 .

[214]  R. Vadlamudi,et al.  A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner. , 1993, The Journal of biological chemistry.

[215]  P. Denolf,et al.  Two Different Bacillus thuringiensis Delta-Endotoxin Receptors in the Midgut Brush Border Membrane of the European Corn Borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) , 1993, Applied and environmental microbiology.

[216]  D. Ellar,et al.  An analysis of Bacillus thuringiensis delta-endotoxin action on insect-midgut-membrane permeability using a light-scattering assay. , 1993, European journal of biochemistry.

[217]  Juliet D. Tang,et al.  Resistance of diamondback moth (Lepidoptera : Plutellidae) to Bacillus thuringiensis subspecies in the field , 1993 .

[218]  K. Sen,et al.  Transcriptional regulation of Bacillus thuringiensis subsp. israelensis mosquito larvicidal crystal protein gene cryIVA , 1993, Journal of bacteriology.

[219]  D. Lereclus,et al.  Full expression of the cryIIIA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription , 1993, Journal of bacteriology.

[220]  B. Tabashnik,et al.  Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptera: Plutellidae) , 1993, Applied and environmental microbiology.

[221]  H. Kaplan,et al.  Evidence that the CryIA crystal protein from Bacillus thuringiensis is associated with DNA. , 1993, The Journal of biological chemistry.

[222]  Y. Shai,et al.  Structural and functional characterization of the alpha 5 segment of Bacillus thuringiensis delta-endotoxin. , 1993, Biochemistry.

[223]  Deborah L. Miller,et al.  Selection of a Colorado Potato Beetle (Coleoptera: Chrysomelidae) Strain Resistant to Bacillus thuringiensis , 1993 .

[224]  J. Errington,et al.  Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. , 1993, Microbiological reviews.

[225]  S. Gill,et al.  High-level cryIVD and cytA gene expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes , 1993, Applied and environmental microbiology.

[226]  A. Wadano,et al.  Specific Toxicity of δ-Endotoxins from Bacillus thuringiensis to Bombyx mori. , 1993, Bioscience, biotechnology, and biochemistry.

[227]  M. Koziel,et al.  The Insecticidal Crystal Proteins of Bacillus thuringiensis: Past, Present and Future Uses , 1993 .

[228]  L. Crossland,et al.  Field Performance of Elite Transgenic Maize Plants Expressing an Insecticidal Protein Derived from Bacillus thuringiensis , 1993, Bio/Technology.

[229]  V. Sanchis,et al.  Identification and partial purification of a Bacillus thuringiensis CryIC δ‐endotoxin binding protein from spodoptera littoralis gut membranes , 1993, FEBS letters.

[230]  C. Carlson,et al.  A complete physical map of a Bacillus thuringiensis chromosome , 1993, Journal of bacteriology.

[231]  S. Higgs,et al.  Bacillus thuringiensis : an environmental biopesticide : theory and practice , 1993 .

[232]  D. Bosch,et al.  Domain-function studies on Bacillus thuringiensis crystal proteins: a genetic approach. , 1993 .

[233]  J. C. P. Moran RNA Polymerase and Transcription Factors , 1993 .

[234]  R. Losick,et al.  Bacillus Subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics , 1993 .

[235]  J. Charles,et al.  Immunological localization of Bacillus thuringiensis serovar israelensis toxins in midgut cells of intoxicated Anopheles gambiae larvae (Diptera: Culicidae). , 1993, Research in microbiology.

[236]  T. Komano,et al.  Identification of a promoter for the crystal protein-encoding gene cryIVB from Bacillus thuringiensis subsp. israelensis. , 1993, Gene.

[237]  K. Shimamoto,et al.  Insect Resistant Rice Generated by Introduction of a Modified δ-endotoxin Gene of Bacillus thuringiensis , 1993, Bio/Technology.

[238]  T. Johnson,et al.  Characterization of two genes encoding Bacillus thuringiensis insecticidal crystal proteins toxic to Coleoptera species , 1992, Applied and environmental microbiology.

[239]  M. Whalon,et al.  Managing Insect Resistance to Bacillus thuringiensis Toxins , 1992, Science.

[240]  J. Mallet,et al.  Preventing insect adaptation to insect-resistant crops: are seed mixtures or refugia the best strategy? , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[241]  A. Bravo,et al.  Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects , 1992 .

[242]  P. Gamel,et al.  Characterization and properties of a novel plasmid vector for Bacillus thuringiensis displaying compatibility with host plasmids. , 1992, Gene.

[243]  B. Tabashnik Evaluation of synergism among Bacillus thuringiensis toxins , 1992, Applied and environmental microbiology.

[244]  M. Koziel,et al.  Field Evaluation of Transgenic Tobacco Containing a Bacillus thuringiensis Insecticidal Protein Gene , 1992 .

[245]  F. Gould,et al.  Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[246]  Takashi Yamamoto,et al.  INVITATION PAPER (C.P. ALEXANDER FUND): HISTORY OF BACILLUS THURINGIENSIS BERLINER RESEARCH AND DEVELOPMENT , 1992, The Canadian Entomologist.

[247]  M. Ohba,et al.  Naturally occurring Bacillus thuringiensis in Indonesia , 1992 .

[248]  J. Delcour,et al.  IS231 D, E and F, three new insertion sequences in Bacillus thuringiensis: extension of the IS231 family , 1992, Molecular microbiology.

[249]  N. Crickmore,et al.  Comparison of Bacillus thuringiensis subsp. israelensis CryIVA and CryIVB cloned toxins reveals synergism in vivo. , 1992, FEMS microbiology letters.

[250]  Katherine A. Kantardjieff,et al.  The crystal structure of diphtheria toxin , 1992, Nature.

[251]  E. Ward,et al.  Chemical Regulation of Bacillus Thuringiensis ∂-Endotoxin Expression in Transgenic Plants , 1992, Bio/Technology.

[252]  L. Bauer,et al.  Characterization of the pH-mediated solubility of Bacillus thuringiensis var. san diego native delta-endotoxin crystals. , 1992, Biochemical and biophysical research communications.

[253]  D. Tsernoglou,et al.  Refined structure of the pore-forming domain of colicin A at 2.4 A resolution. , 1992, Journal of molecular biology.

[254]  D. Lereclus,et al.  Expansion of Insecticidal Host Range of Bacillus Thuringiensis by in vivo Genetic Recombination , 1992, Bio/Technology.

[255]  H. D. Burges,et al.  Distribution, Frequency, and Diversity of Bacillus thuringiensis in an Animal Feed Mill , 1992, Applied and environmental microbiology.

[256]  J. Feitelson,et al.  Bacillus thuringiensis: Insects and Beyond , 1992, Bio/Technology.

[257]  S. Brenner,et al.  Expression of the mosquitocidal toxins of Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis by recombinant Caulobacter crescentus, a vehicle for biological control of aquatic insect larvae , 1992, Applied and environmental microbiology.

[258]  D. Dean,et al.  Location of a Bombyx mori receptor binding region on a Bacillus thuringiensis delta-endotoxin. , 1992, The Journal of biological chemistry.

[259]  R. Losick,et al.  Crisscross regulation of cell-type-specific gene expression during development in B. subtilis , 1992, Nature.

[260]  A. Aronson,et al.  Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity. , 1992, The Journal of biological chemistry.

[261]  B. Lambert,et al.  Insecticidal Promise of Bacillus thuringiensis Facts and mysteries about a successful biopesticide , 1992 .

[262]  C. Decock,et al.  Nucleotide sequence of gene cryIIID encoding a novel coleopteran-active crystal protein from strain BTI109P of Bacillus thuringiensis subsp. kurstaki. , 1992, Gene.

[263]  S. Gill,et al.  The mode of action of Bacillus thuringiensis endotoxins. , 1992, Annual review of entomology.

[264]  D. Lereclus,et al.  Construction of cloning vectors for Bacillus thuringiensis. , 1991, Gene.

[265]  M. Koziel,et al.  Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles , 1991, Applied and environmental microbiology.

[266]  D. Ellar,et al.  Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution , 1991, Nature.

[267]  R. Fuchs,et al.  Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[268]  M. Adang,et al.  Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis , 1991, Applied and environmental microbiology.

[269]  D. Rivers,et al.  Functional domains of Bacillus thuringiensis insecticidal crystal proteins. Refinement of Heliothis virescens and Trichoplusia ni specificity domains on CryIA(c). , 1991, The Journal of biological chemistry.

[270]  W. Surewicz,et al.  The toxic moiety of the Bacillus thuringiensis protoxin undergoes a conformational change upon activation. , 1991, Biochemical and biophysical research communications.

[271]  P. Kämpfer Application of miniaturized physiological tests in numerical classification and identification of some Bacilli , 1991 .

[272]  J. Delcour,et al.  IS231A from Bacillus thuringiensis is functional in Escherichia coli: transposition and insertion specificity , 1991, Journal of bacteriology.

[273]  M. Collins,et al.  Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. , 1991, International journal of systematic bacteriology.

[274]  J. Schwartz,et al.  Early response of cultured lepidopteran cells to exposure to delta-endotoxin from Bacillus thuringiensis: involvement of calcium and anionic channels. , 1991, Biochimica et biophysica acta.

[275]  S. Jansens,et al.  Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[276]  G. Rapoport,et al.  Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity , 1991, Journal of bacteriology.

[277]  H. R. Whiteley,et al.  Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter , 1991, Journal of bacteriology.

[278]  L. Masson,et al.  Specificity of Activated CryIA Proteins from Bacillus thuringiensis subsp. kurstaki HD-1 for Defoliating Forest Lepidoptera , 1991, Applied and environmental microbiology.

[279]  R. Fuchs,et al.  Modification of the coding sequence enhances plant expression of insect control protein genes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[280]  A. Aronson,et al.  The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects , 1991, Applied and environmental microbiology.

[281]  N. Sandler,et al.  Cloning and expression of Bacillus thuringiensis israelensis δ-endotoxin DNA in B. sphaericus , 1991 .

[282]  A. Macaluso,et al.  Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA , 1991, Journal of bacteriology.

[283]  Robert Alan Smith,et al.  The Phylloplane as a Source of Bacillus thuringiensis Variants , 1991, Applied and environmental microbiology.

[284]  D. Ellar,et al.  Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. , 1991, Nature.

[285]  K. Schleifer,et al.  Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies. , 1991, Systematic and applied microbiology.

[286]  N. Sandler,et al.  Cloning and expression of Bacillus thuringiensis israelensis delta-endotoxin DNA in B. sphaericus. , 1991, Journal of invertebrate pathology.

[287]  J. D. Young,et al.  Cytolytic pore-forming proteins and peptides: is there a common structural motif? , 1991, Trends in biochemical sciences.

[288]  J. Baum,et al.  Genetic manipulation of Bacillus thuringiensis insecticidal crystal protein genes in bacteria. , 1991, Genetic engineering.

[289]  C. Choma,et al.  Folding and unfolding of the protoxin from Bacillus thuringiensis: evidence that the toxic moiety is present in an active conformation. , 1990, Biochemistry.

[290]  H. R. Whiteley,et al.  Specificity-determining regions of a lepidopteran-specific insecticidal protein produced by Bacillus thuringiensis. , 1990, The Journal of biological chemistry.

[291]  H. R. Whiteley,et al.  Isolation of the second Bacillus thuringiensis RNA polymerase that transcribes from a crystal protein gene promoter , 1990, Journal of bacteriology.

[292]  M. Adang,et al.  Expression of a Bacillus thuringiensis crystal protein gene in Pseudomonas cepacia 526 , 1990 .

[293]  D. Lereclus,et al.  Structural and genetic organization of IS232, a new insertion sequence of Bacillus thuringiensis , 1990, Journal of bacteriology.

[294]  A. Engström,et al.  Molecular characterization of immune inhibitor A, a secreted virulence protease from Bacillus thuringiensis , 1990, Molecular microbiology.

[295]  J. Baum,et al.  Novel cloning vectors for Bacillus thuringiensis , 1990, Applied and environmental microbiology.

[296]  R. MacKinnon,et al.  Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. , 1990, Science.

[297]  D. Dean,et al.  Hyperexpression of a Bacillus thuringiensis delta-endotoxin-encoding gene in Escherichia coli: properties of the product. , 1990, Gene.

[298]  S. Slatin,et al.  Delta-endotoxins form cation-selective channels in planar lipid bilayers. , 1990, Biochemical and biophysical research communications.

[299]  H. R. Whiteley,et al.  Location of the dipteran specificity region in a lepidopteran-dipteran crystal protein from Bacillus thuringiensis , 1990, Journal of bacteriology.

[300]  P. Jarrett,et al.  Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis , 1990, Applied and environmental microbiology.

[301]  H. Höfte,et al.  Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins , 1990, Applied and environmental microbiology.

[302]  P. Carey,et al.  Characterization of the cysteine residues and disulphide linkages in the protein crystal of Bacillus thuringiensis. , 1990, The Biochemical journal.

[303]  Secondary structure of the entomocidal toxin fromBacillus thuringiensis subsp.kurstaki HD-73 , 1990, Journal of protein chemistry.

[304]  W. H. Mcgaughey,et al.  Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. , 1990, Science.

[305]  B. Levinson High performance liquid chromatography analysis of two beta-exotoxins produced by some Bacillus thuringiensis strains , 1990 .

[306]  D. Ellar,et al.  Models for the structure and function of the Bacillus thuringiensis delta-endotoxins determined by compilational analysis. , 1990, DNA sequence : the journal of DNA sequencing and mapping.

[307]  T. A. Armstrong,et al.  Insect Resistant Cotton Plants , 1990, Bio/Technology.

[308]  D. Sutherland,et al.  Bacterial Control of Mosquitoes & Black Flies , 1990, Springer Netherlands.

[309]  H. Höfte,et al.  Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. , 1989, European journal of biochemistry.

[310]  J. Trumble,et al.  Comparative Toxicity of Spores and Crystals from the NRD-12 and HD-1 Strains of Bacillus thuringiensis suhsp. kurstaki to Neonate Beet Armyworm (Lepidoptera: Noctuidae) , 1989 .

[311]  I. Smith,et al.  Regulation of Procaryotic Development: Structural and Functional Analysis of Bacterial Sporulation and Germination , 1989 .

[312]  S. Gill,et al.  Binding and aggregation of the 25-kilodalton toxin of Bacillus thuringiensis subsp. israelensis to cell membranes and alteration by monoclonal antibodies and amino acid modifiers , 1989, Applied and environmental microbiology.

[313]  S. Maddrell,et al.  Action of activated 27,000 Mr toxin from Bacillus thuringiensis var. israelensis on Malpighian tubules of the insect, Rhodnius prolixus. , 1989, Journal of cell science.

[314]  Phyllis A. W. Martin,et al.  Worldwide Abundance and Distribution of Bacillus thuringiensis Isolates , 1989, Applied and environmental microbiology.

[315]  R. MacKinnon,et al.  Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor. , 1989, Science.

[316]  P. Carey,et al.  Isolation of carboxyl-terminal peptides from proteins by diagonal electrophoresis: application to the entomocidal toxin from Bacillus thuringiensis. , 1989, Analytical biochemistry.

[317]  L. Masson,et al.  Transformation of Bacillus thuringiensis vegetative cells by electroporation. , 1989, FEMS microbiology letters.

[318]  D. Lereclus,et al.  Transformation and expression of a cloned δ-endotoxin gene in bacillus thuringiensis , 1989 .

[319]  W. Chungjatupornchai,et al.  Transformation ofBacillus thuringiensisby electroporation , 1989 .

[320]  H. R. Whiteley,et al.  Insecticidal crystal proteins of Bacillus thuringiensis. , 1989, Microbiological reviews.

[321]  J. Trevors,et al.  Transformation of Bacillus cereus vegetative cells by electroporation , 1989, Applied and environmental microbiology.

[322]  D. Dean,et al.  Location of the Bombyx mori specificity domain on a Bacillus thuringiensis delta-endotoxin protein. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[323]  S. Sims,et al.  Selection of tobacco budworm for resistance to a genetically engineered Pseudomonas fluorescens containing the δ-endotoxin of Bacillus thuringiensis subsp. kurstaki , 1989 .

[324]  C. B. Thorne,et al.  Involvement of Tn4430 in transfer of Bacillus anthracis plasmids mediated by Bacillus thuringiensis plasmid pXO12 , 1989, Journal of bacteriology.

[325]  H. R. Whiteley,et al.  A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli , 1989, Journal of bacteriology.

[326]  D. Ellar,et al.  Transformation of Bacillus thuringiensis by electroporation. , 1989, FEMS microbiology letters.

[327]  G. Rapoport,et al.  Nucleotide sequence and characterization of a new insertion element, IS240, from Bacillus thuringiensis israelensis. , 1989, Plasmid.

[328]  C. Hofmann,et al.  Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[329]  C. Chilcott,et al.  Comparative toxicity of Bacillus thuringiensis var. israelensis crystal proteins in vivo and in vitro. , 1988, Journal of general microbiology.

[330]  G. Rapoport,et al.  A Bacillus thuringiensis subsp. israelensis gene encoding a 125-kilodalton larvicidal polypeptide is associated with inverted repeat sequences , 1988, Journal of bacteriology.

[331]  W. Harvey,et al.  Barium and calcium block Bacillus thuringiensis subspecies Kurstaki delta-endotoxin inhibition of potassium current across isolated midgut of larval Manduca sexta. , 1988, The Journal of experimental biology.

[332]  F. Priest,et al.  A numerical classification of the genus Bacillus. , 1988, Journal of general microbiology.

[333]  H. R. Whiteley,et al.  Isolation of a Bacillus thuringiensis RNA polymerase capable of transcribing crystal protein genes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[334]  D. Lereclus,et al.  Multiplicity of §‐endotoxin genes with different insecticidal specificities in Bacillus thuringiensis aizawai 7.29 , 1988, Molecular microbiology.

[335]  D. Lereclus,et al.  Structural and functional analysis of Tn4430: identification of an integrase‐like protein involved in the co‐integrate‐resolution process. , 1988, The EMBO journal.

[336]  N. Lane,et al.  The initial stages in the action of an insecticidal delta-endotoxin of Bacillus thuringiensis var. israelensis on the epithelial cells of the malpighian tubules of the insect, Rhodnius prolixus. , 1988, Journal of cell science.

[337]  V. Pliska,et al.  Binding of the delta endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). , 1988, European journal of biochemistry.

[338]  Richard W. Beeman,et al.  Resistance to Bacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptera: Pyralidae) , 1988 .

[339]  F. Gould Evolutionary Biology and Genetically Engineered CropsConsideration of evolutionary theory can aid in crop design , 1988 .

[340]  H. R. Whiteley,et al.  Bacillus thuringiensis §-Endotoxin Expressed in Transgenic Nicotiana tabacum Provides Resistance to Lepidopteran Insects , 1987 .

[341]  D. Ellar,et al.  Analysis of the molecular basis of insecticidal specificity of Bacillus thuringiensis crystal delta-endotoxin. , 1987, The Biochemical journal.

[342]  S. G. Rogers,et al.  Insect Tolerant Transgenic Tomato Plants , 1987, Bio/Technology.

[343]  M. Montagu,et al.  Transgenic plants protected from insect attack , 1987, Nature.

[344]  B. H. Knowles,et al.  Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity , 1987 .

[345]  Phyllis A. W. Martin,et al.  Selective Process for Efficient Isolation of Soil Bacillus spp , 1987, Applied and environmental microbiology.

[346]  A. Margaritis,et al.  Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis. , 1987 .

[347]  M. Zabeau,et al.  Cloning and nucleotide sequence of different iso-IS231 elements and their structural association with the Tn4430 transposon in Bacillus thuringiensis. , 1987, Gene.

[348]  L. Watrud,et al.  Tn5-mediated integration of the delta-endotoxin gene from Bacillus thuringiensis into the chromosome of root-colonizing pseudomonads , 1986, Journal of bacteriology.

[349]  V. Sacchi,et al.  Bacillus thuringiensis toxin inhibits K+‐gradient‐dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells , 1986 .

[350]  H. G. Boman,et al.  Bacteriophage-resistant mutants of Bacillus thuringiensis with decreased virulence in pupae of Hyalophora cecropia , 1986, Journal of bacteriology.

[351]  B. H. Knowles,et al.  Specificity of Bacillus thuringiensis var. colmeri insecticidal delta-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. , 1986, European journal of biochemistry.

[352]  H. C. Wong,et al.  Identification of a positive retroregulator that stabilizes mRNAs in bacteria. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[353]  M. F. Miller,et al.  Vegetative expression of the delta-endotoxin genes of Bacillus thuringiensis subsp. kurstaki in Bacillus subtilis , 1986, Journal of bacteriology.

[354]  D. Mckay,et al.  Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[355]  K. Bernhard Studies on the delta-endotoxin of Bacillus thuringiensis var. tenebrionis , 1986 .

[356]  H. R. Whiteley,et al.  Three classes of homologous Bacillus thuringiensis crystal-protein genes. , 1986, Gene.

[357]  L. Watrud,et al.  Integration of the delta-endotoxin gene of Bacillus thuringiensis into the chromosome of root-colonizing strains of pseudomonads using Tn5. , 1986, Gene.

[358]  L. E. Casida,et al.  Survival of Bacillus thuringiensis Spores in Soil , 1985, Applied and environmental microbiology.

[359]  F. Chang,et al.  Synergism in mosquitocidal activity of 26 and 65 kDa proteins from Bacillus thuringiensis subsp. israelensis crystal , 1985 .

[360]  W. H. Mcgaughey Evaluation of Bacillus thuringiensis for Controlling Indianmeal Moths (Lepidoptera: Pyralidae) in Farm Grain Bins and Elevator Silos , 1985 .

[361]  W. H. Mcgaughey,et al.  Insect Resistance to the Biological Insecticide Bacillus thuringiensis , 1985, Science.

[362]  H. D. Burges,et al.  Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil: Effects of pH, moisture, nutrient availability and indigenous microorganisms , 1985 .

[363]  M. J. Lynch,et al.  Phenotypic characterization of Bacillus thuringiensis and Bacillus cereus , 1984 .

[364]  D. Lereclus,et al.  A transposon‐like structure related to the delta‐endotoxin gene of Bacillus thuringiensis. , 1984, The EMBO journal.

[365]  H. R. Whiteley,et al.  Inverted repeat sequences flank a Bacillus thuringiensis crystal protein gene , 1984, Journal of bacteriology.

[366]  H. D. Burges,et al.  Persistence of Bacillus thuringiensis parasporal crystal insecticidal activity in soil , 1984 .

[367]  H. D. Burges,et al.  Effect of incubation in natural and autoclaved soil upon potency and viability of , 1984 .

[368]  N. A. Logan,et al.  Identification of Bacillus strains using the API system. , 1984, Journal of general microbiology.

[369]  H. Barjac,et al.  A new serovar of Bacillus thuringiensis from grain dust: Bacillus thuringiensis serovar colmeri (serovar 21) , 1984 .

[370]  B. H. Knowles,et al.  Lectin‐like binding of Bacillus thuringiensis var, kurstaki lepidopteran‐specific toxin is an initial step in insecticidal action , 1984, FEBS letters.

[371]  Y. Nagamatsu,et al.  A Toxic Fragment from the Entomocidal Crystal Protein of Bacillus thuringiensis , 1984 .

[372]  M. G. Wolfersberger Enzymology of Plasma Membranes of Insect Intestinal Cells , 1984 .

[373]  John F Anderson,et al.  Single Applications of High Concentrations of Bacillus thuringiensis for Control of Gypsy Moth (Lepidoptera: Lymantriidae) Populations and Their Impact on Parasitism and Disease , 1983 .

[374]  O. Lysenko Bacillus thuringiensis: evolution of a taxonomic conception , 1983 .

[375]  H. R. Whiteley,et al.  Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. , 1983, The Journal of biological chemistry.

[376]  A. Tojo,et al.  Dissolution and Degradation of Bacillus thuringiensis δ-Endotoxin by Gut Juice Protease of the Silkworm Bombyx mori , 1983, Applied and environmental microbiology.

[377]  W. Thomas,et al.  Mechanism of action of Bacillus thuringiensis var israelensis insecticidal delta-endotoxin. , 1983, FEBS letters.

[378]  J. M. González,et al.  Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[379]  A. D. Larson,et al.  Bacillus thuringiensis distribution in soils of the United States. , 1981, Canadian journal of microbiology.

[380]  J. M. González,et al.  Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. , 1981, Plasmid.

[381]  Á. Lagunes-Tejeda,et al.  The occurrence of resistance to pesticides in arthropods , 1981 .

[382]  M. Ohba,et al.  The isolates of Bacillus thuringiensis serotype 10 with a highly preferential toxicity to mosquito larvae. , 1980, Journal of invertebrate pathology.

[383]  M. G. Wolfersberger,et al.  Mechanism of inhibition of active potassium transport in isolated midgut of Manduca sexta by Bacillus thuringiensis endotoxin. , 1979, The Journal of experimental biology.

[384]  A. D. Larson,et al.  Two new serovars of Bacillus thuringiensis: Serovars dakota and indiana (Serovars 15 and 16) , 1979 .

[385]  T. Kaneko,et al.  Deoxyribonucleic Acid Relatedness between Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis , 1978, Microbiology and immunology.

[386]  H. D. Burges,et al.  Ecology of Bacillus thuringiensis in storage moths , 1977 .

[387]  J. Margalit,et al.  A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti and Culex pipiens [Insect pests] , 1977 .

[388]  W. Haynes,et al.  The genus Bacillus , 1973 .

[389]  G. Rapoport,et al.  Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA. , 1972, Biochimie.

[390]  H. Dulmage Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. , 1970 .

[391]  Y. Morrison presented at the Annual Meeting of the , 1970 .

[392]  R. Dedonder,et al.  Enzymatic hydrolysis of the crystals of Bacillus thuringiensis by the proteases of Pieris brassicae I. Preparation and fractionation of the lysates , 1967 .

[393]  R. Dedonder,et al.  [Proteases of Pieris brassicae. I. Purification and properties]. , 1966, Bulletin de la Societe de chimie biologique.

[394]  A. M. Heimpel INVESTIGATIONS OF THE MODE OF ACTION OF STRAINS OF BACILLUS CEREUS FR. AND FR. PATHOGENIC FOR THE LARCH SAWFLY, PRISTIPHORA ERICHSONII (HTG.) , 1955 .

[395]  J. M. Stephens DISEASE IN CODLING MOTH LARVAE PRODUCED BY SEVERAL STRAINS OF BACILLUS CEREUS , 1952 .