Enhanced electrostrictive effects in nonstoichiometric 0.99Bi0.505(Na0.8K0.2)0.5-xTiO3-0.01SrTiO3 lead-free ceramics

[1]  J. Zhai,et al.  Electric-field-temperature phase diagram and electromechanical properties in lead-free (Na0.5Bi0.5)TiO3-based incipient piezoelectric ceramics , 2017 .

[2]  H. Yan,et al.  Effect of Phase Transitions on Thermal Depoling in Lead-Free 0.94(Bi0.5Na0.5TiO3)–0.06(BaTiO3) Based Piezoelectrics , 2017 .

[3]  Peng Liu,et al.  Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics , 2016 .

[4]  Xiangyong Zhao,et al.  Study of temperature-dependent Raman spectroscopy and electrical properties in [001]-oriented 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3-Mn single crystals , 2016 .

[5]  H. Fan,et al.  Optical and Tunable Dielectric Properties of K0.5Na0.5NbO3–SrTiO3 Ceramics , 2016 .

[6]  Peng Liu,et al.  Microstructure and Electrical Properties of Nonstoichiometric 0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 Lead-Free Ceramics , 2016 .

[7]  X. Tan,et al.  Giant Strains in Non‐Textured (Bi1/2Na1/2)TiO3‐Based Lead‐Free Ceramics , 2016, Advanced materials.

[8]  Xiangyong Zhao,et al.  Phase transition behavior and defect chemistry of [001]-oriented 0.15Pb(In1/2Nb1/2)O3-0.57Pb(Mg1/3Nb2/3)O3-0.28PbTiO3-Mn single crystals , 2015 .

[9]  Kyle G. Webber,et al.  Transferring lead-free piezoelectric ceramics into application , 2015 .

[10]  Zhao Pan,et al.  Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics , 2015, Nature Communications.

[11]  J. Zhai,et al.  Phase diagram and electrostrictive effect in BNT-based ceramics , 2015 .

[12]  Jianguo Zhu,et al.  Giant d33 in nonstoichiometric (K, Na)NbO3-Based lead-free ceramics , 2015 .

[13]  H. Yan,et al.  Lithium-induced phase transitions in lead-free Bi0. 5Na0. 5TiO3 based ceramics , 2014 .

[14]  Xiangyong Zhao,et al.  Electric field and temperature-induced phase transition in Mn-doped Na1/2Bi1/2TiO3-5.0 at.%BaTiO3 single crystals investigated by micro-Raman scattering , 2014 .

[15]  Fei Li,et al.  Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity , 2014 .

[16]  Feifei Wang,et al.  Large electrostrictive effect in ternary Bi0.5Na0.5TiO3-based solid solutions , 2013 .

[17]  H. Yan,et al.  Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics , 2013 .

[18]  L. Luo,et al.  A-site vacancy-induced giant strain and the electrical properties in non-stoichiometric ceramics Bi0.5+x(Na1−yKy)0.5−3xTiO3 , 2012 .

[19]  Jiadong Zang,et al.  Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective , 2012, Journal of Electroceramics.

[20]  Wook Jo,et al.  On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3 , 2011 .

[21]  W. Jo,et al.  Lead-free electrostrictive bismuth perovskite ceramics with thermally stable field-induced strains , 2011 .

[22]  D. Viehland,et al.  Raman spectroscopic study of Na1/2Bi1/2TiO3-x%BaTiO3 single crystals as a function of temperature and composition , 2011 .

[23]  Christopher S. Lynch,et al.  The effect of temperature on the large field electromechanical response of relaxor ferroelectric 8/65/35 PLZT , 2011 .

[24]  W. Jo,et al.  Structural investigations on lead-free Bi1/2Na1/2TiO3-based piezoceramics , 2011 .

[25]  Yiping Guo,et al.  Composition-induced antiferroelectric phase and giant strain in lead-free (Na y ,Bi z )Ti 1- x O 3(1- x ) -xBaTiO 3 ceramics , 2011 .

[26]  T. Park,et al.  Effects of Bi nonstoichiometry in (Bi0.5+xNa)TiO3 ceramics , 2011 .

[27]  N. Setter,et al.  Structural complexity of (Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy , 2010, 1003.0660.

[28]  T. Park,et al.  Effects of Na nonstoichiometry in (Bi0.5Na0.5+x)TiO3 ceramics , 2010 .

[29]  Dragan Damjanovic,et al.  High‐Strain Lead‐free Antiferroelectric Electrostrictors , 2009 .

[30]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[31]  Helmut Ehrenberg,et al.  Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system , 2007 .

[32]  U. Waghmare,et al.  Origin of the relaxor state in Pb(B{x}B{1-x}{'})O(3) perovskites. , 2006, Physical review letters.

[33]  Z. Yu,et al.  High, Purely Electrostrictive Strain in Lead‐Free Dielectrics , 2006 .

[34]  Dragan Damjanovic Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics , 2005 .

[35]  R. Pirc,et al.  Effect of polar nanoregions on giant electrostriction and piezoelectricity in relaxor ferroelectrics , 2004 .

[36]  C. Park,et al.  Diffuse dielectric anomaly in perovskite-type ferroelectric oxides in the temperature range of 400–700 °C , 2003 .

[37]  S. Pilgrim,et al.  The use of harmonic analysis of the strain response in Pb(Mg/sub 1/3/Nb/sub 2/3/)O/sub 3/-based ceramics to calculate electrostrictive coefficients , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[38]  Z. Ye,et al.  Relaxor Ferroelectric Complex Perovskites: Structure, Properties and Phase Transitions , 1998 .

[39]  Westphal,et al.  Diffuse phase transitions and random-field-induced domain states of the "relaxor" ferroelectric PbMg1/3Nb2/3O3. , 1992, Physical review letters.

[40]  K. Uchino,et al.  Electrostrictive effect in perovskites and its transducer applications , 1981 .

[41]  G. Smolensky,et al.  New ferroelectrics of complex composition. IV , 1961 .