Improving image annotation via useful representative feature selection

This paper describes the automatic assignment of images into classes described by individual keywords provided with the Corel data set. Automatic image annotation technology aims to provide an efficient and effective searching environment for users to query their images more easily, but current image retrieval systems are still not very accurate when assigning images into a large number of keyword classes. Noisy features are the main problem, causing some keywords never to be assigned to their correct images. This paper focuses on improving image classification, first by selection of features to characterise each image, and then the selection of the most suitable feature vectors as training data. A Pixel Density filter (PDfilter) and Information Gain (IG) are proposed to perform these respective tasks. We filter out the noisy features so that groups of images can be represented by their most important values. The experiments use hue, saturation and value (HSV) colour feature space to categorise images according to one of 190 concrete keywords or subsets of these. The study shows that feature selection through the PDfilter and IG can improve the problem of spurious similarity.

[1]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[2]  Simone Santini,et al.  In search of information in visual media , 1997, CACM.

[3]  Wan-Chi Siu,et al.  Multimedia Information Retrieval and Management: Technological Fundamentals and Applications , 2010 .

[4]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[5]  Michael Oakes,et al.  Statistics for Corpus Linguistics , 1998 .

[6]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[7]  John Tait,et al.  Qualitative evaluation of automatic assignment of keywords to images , 2006, Inf. Process. Manag..

[8]  Paul Clough,et al.  The IAPR TC-12 Benchmark: A New Evaluation Resource for Visual Information Systems , 2006 .

[9]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[10]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Chih-Fong Tsai Automatically annotating images with keywords , 2005 .

[13]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[14]  Shih-Fu Chang,et al.  A conceptual framework and empirical research for classifying visual descriptors , 2001, J. Assoc. Inf. Sci. Technol..

[15]  Mohan S. Kankanhalli,et al.  Perspectives on Content-Based Multimedia Systems , 2000, The Information Retrieval Series.

[16]  Michael Heine,et al.  Finding Out About: A Cognitive Perspective on Search Engine Technology and the WWW , 2002, J. Documentation.

[17]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[18]  Stefan M. Rüger,et al.  Evaluation of Texture Features for Content-Based Image Retrieval , 2004, CIVR.

[19]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[20]  R. Manmatha,et al.  Using Maximum Entropy for Automatic Image Annotation , 2004, CIVR.

[21]  Thierry Pun,et al.  A Framework for Benchmarking in CBIR , 2003, Multimedia Tools and Applications.

[22]  Gustavo Carneiro,et al.  Supervised Learning of Semantic Classes for Image Annotation and Retrieval , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Alberto Del Bimbo Image and Video Databases: Visual Browsing, Querying and Retrieval , 1996, J. Vis. Lang. Comput..

[24]  Aura Conci,et al.  Comparing the influence of color spaces and metrics in content-based image retrieval , 1998, Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237).

[25]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[26]  Sethuraman Panchanathan,et al.  Review of Image and Video Indexing Techniques , 1997, J. Vis. Commun. Image Represent..

[27]  Aditya Vailaya,et al.  Semantic classification in image databases , 2000 .

[28]  Paul Over,et al.  The TREC VIdeo Retrieval Evaluation (TRECVID): A Case Study and Status Report , 2004, RIAO.

[29]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[30]  Esther Dyson,et al.  Education and jobs in the digital world , 1997, CACM.

[31]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[32]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[33]  Shih-Fu Chang,et al.  A conceptual framework and empirical research for classifying visual descriptors , 2001 .

[34]  Ferdinand van der Heijden Image Based Measurement Systems: Object Recognition and Parameter Estimation , 1995 .

[35]  James C. French,et al.  Improving Image Retrieval Effectiveness via Multiple Queries , 2003, MMDB '03.

[36]  Sethuraman Panchanathan,et al.  A critical evaluation of image and video indexing techniques in the compressed domain , 1999, Image Vis. Comput..

[37]  Jamshid Shanbehzadeh,et al.  Image indexing and retrieval techniques: past, present, and next , 1999, Electronic Imaging.

[38]  Fuhui Long,et al.  Fundamentals of Content-Based Image Retrieval , 2003 .

[39]  Michael S. Lew,et al.  Principles of Visual Information Retrieval , 2001, Advances in Pattern Recognition.

[40]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[41]  R. Manmatha,et al.  A Model for Learning the Semantics of Pictures , 2003, NIPS.

[42]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[43]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[44]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..