Observing Gravity Change in the Fennoscandian Uplift Area with the Hanover Absolute Gravimeter

The Nordic countries Norway, Sweden, Finland and Denmark are a key study region for research of glacial isostasy. In addition, such research offers a unique opportunity for absolute gravimetry to show its capability as a geodetic tool for geophysical research. Within a multi-national cooperation, annual absolute gravity measurements have been performed in Fennoscandia by IfE since 2003. For the Hanover gravimeter FG5-220, overall accuracy of ±30 nm/s2 is indicated for a single station determination. First results of linear gravity changes are derived for ten stations in the central and southern part of the uplift area. Comparing with the rates predicted by glacial rebound modelling, the gravity trends of the absolute measurements differ by 3.8 nm/s2 per year (root-mean-square discrepancy) from the uplift model. The mean difference between observed and predicted rates is 0.8 nm/s2 per year only. A proportionality factor of −1.63 ± 0.20 nm/s2 per mm has been obtained, which describes the mean ratio between the observational gravity and height rates.

[1]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[2]  Paul Johnston,et al.  Sea‐level change, glacial rebound and mantle viscosity fornorthern Europe , 1998 .

[3]  O. Francis,et al.  Uncertainty of absolute gravity measurements , 2005 .

[4]  Georg Kaufmann,et al.  Glacial isostatic adjustment in Fennoscandia for a laterally heterogeneous earth , 2000 .

[5]  A. Reinhold,et al.  Observing Fennoscandian Gravity Change by Absolute Gravimetry , 2006 .

[6]  M. Bouin,et al.  Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide , 2007 .

[7]  D. Wolf The changing role of the lithosphere in models of glacial isostasy: a historical review , 1993 .

[8]  Jan M. Johansson,et al.  Vertical crustal motion observed in the BIFROST project , 2003 .

[9]  William E. Carter,et al.  New gravity meter improves measurements , 1994 .

[10]  J. Johansson,et al.  Space-Geodetic Constraints on Glacial Isostatic Adjustment in Fennoscandia , 2001, Science.

[11]  M. Ekman,et al.  Recent postglacial rebound, gravity change and mantle flow in Fennoscandia , 1996 .

[12]  O. Francis,et al.  Analysis of results of the International Comparison of Absolute Gravimeters in Walferdange (Luxembourg) of November 2003 , 2005 .

[13]  Enzo Boschi,et al.  Glacial isostasy, sea-level and mantle rheology , 1991 .

[14]  R Haas,et al.  Atmospheric loading corrections in geodetic VLBI and determination of atmospheric loading coefficients , 1997 .

[15]  A. Lambert,et al.  The Role and Capability of Absolute Gravity Measurements in Determining the Temporal Variations in the Earth’s Gravity Field , 1996 .

[16]  O. Francis,et al.  Results of the European Comparison of Absolute Gravimeters in Walferdange (Luxembourg) of November 2007 , 2010 .

[17]  S. Williams,et al.  Absolute gravity measurements at UK tide gauges , 2001 .

[18]  J. Johansson,et al.  Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results , 2002 .

[19]  A. Lehmann,et al.  How Baltic Sea Water Mass Variations Mask the Postglacial Rebound Signal in CHAMP and GRACE Gravity Field Solutions , 2005 .

[20]  R. Jachens The gravity method and interpretive techniques for detecting vertical crustal movements , 1978 .

[21]  William E. Carter,et al.  Geodetic fixing of tide gauge bench marks : technical report , 1989 .

[22]  M. Ekman A consistent map of the postglacial uplift of Fennoscandia , 1996 .

[23]  S. M. Nakiboglu,et al.  Secular Sea-Level Change , 1991 .

[24]  T. James,et al.  New constraints on Laurentide postglacial rebound from absolute gravity measurements , 2001 .

[25]  Z. Martinec Spectral–finite element approach to three‐dimensional viscoelastic relaxation in a spherical earth , 2000 .

[26]  L. Timmen Precise definition of the effective measurement height of free-fall absolute gravimeters , 2003 .

[27]  B. G. Harsson,et al.  The Fennoscandian Land Uplift Gravity Lines 1966–2003 , 2005 .

[28]  J. Wahr,et al.  What Might GRACE Contribute to Studies of Post Glacial Rebound? , 2003 .

[29]  J. Wahr,et al.  Predictions of vertical uplift caused by changing polar ice volumes on a viscoelastic earth , 1995 .

[30]  R. Forsberg,et al.  Absolute Gravimetry with the Hannover Meters JILAg-3 and FG5-220, and their Deployment in a Danish-German Cooperation , 2008 .

[31]  Kurt Lambeck,et al.  Tests of glacial rebound models for Fennoscandinavia based on instrumented sea‐ and lake‐level records , 1998 .

[32]  Z. Martinec,et al.  An Estimate of Global Mean Sea-level Rise Inferred from Tide-gauge Measurements Using Glacial-isostatic Models Consistent with the Relative Sea-level Record , 2007 .

[33]  Jan M. Johansson,et al.  An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia , 2007 .

[34]  Timothy M. Niebauer,et al.  A new generation of absolute gravimeters , 1995 .

[35]  Kazuo Shibuya,et al.  Absolute gravimetry in Antarctica: Status and prospects , 2007 .