Study of CO2 adsorption on a commercial CuO/ZnO/Al2O3 catalyst

[1]  Thongthai Witoon,et al.  CO2 hydrogenation to methanol over CuO–ZnO–ZrO2–SiO2 catalysts: Effects of SiO2 contents , 2017 .

[2]  Ping Liu,et al.  Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts , 2017, Science.

[3]  Xiaoming Guo,et al.  Methanol synthesis from CO2 hydrogenation over copper catalysts supported on MgO-modified TiO2 , 2016 .

[4]  A. K. Patra,et al.  Functionalized graphene oxide as an efficient adsorbent for CO2 capture and support for heterogeneous catalysis , 2016 .

[5]  Thongthai Witoon,et al.  CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases , 2016 .

[6]  Weidong Li,et al.  Highly selective CO2 adsorption of ZnO based N-doped reduced graphene oxide porous nanomaterial , 2016 .

[7]  B. Michalkiewicz,et al.  Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst , 2014 .

[8]  Yuhan Sun,et al.  Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol , 2013 .

[9]  Wan Nor Roslam Wan Isahak,et al.  Adsorption-desorption of CO2 on different type of copper oxides surfaces: Physical and chemical attractions studies , 2013 .

[10]  M. Kogler,et al.  In Situ FT-IR Spectroscopic Study of CO2 and CO Adsorption on Y2O3, ZrO2, and Yttria-Stabilized ZrO2 , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[11]  Jonathan W. Lekse,et al.  Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide , 2013, Topics in Catalysis.

[12]  C. Unluer,et al.  Characterization of light and heavy hydrated magnesium carbonates using thermal analysis , 2013, Journal of Thermal Analysis and Calorimetry.

[13]  G. Trunfio,et al.  Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2 hydrogenation , 2013 .

[14]  T. R. Hull,et al.  The thermal decomposition of huntite and hydromagnesite—A review☆ , 2010 .

[15]  J. A. Ritter,et al.  In Situ FTIR Spectroscopic Analysis of Carbonate Transformations during Adsorption and Desorption of CO2 in K-Promoted HTlc , 2010 .

[16]  G. Italiano,et al.  Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH , 2008 .

[17]  A. Krause,et al.  Modeling of the adsorption and desorption of CO2 on Cu/ZrO2 and ZrO2 catalysts. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[18]  I. Gaballah,et al.  Thermal decomposition of zinc carbonate hydroxide , 2004 .

[19]  F. Wilburn,et al.  The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate , 2001 .

[20]  J. Skrzypek,et al.  Adsorption model of methanol synthesis reactants on CuOZnOAl2O3 catalyst—I. Adsorption on the catalyst , 1991 .

[21]  Masanori Kato,et al.  Thermal decomposition of hydromagnesite 4MgCO3·Mg(OH)2·4H2O , 1978 .