A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration.

[1]  K. Thoeni,et al.  A Simplified Scheme for Piezoelectric Anisotropic Analysis in Human Vertebrae Using Integral Methods , 2018, Mathematical Problems in Engineering.

[2]  S. Cartmell,et al.  Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. , 2018, Acta biomaterialia.

[3]  Arian Ehterami,et al.  Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications. , 2018, Journal of the mechanical behavior of biomedical materials.

[4]  Wenmiao Shu,et al.  3D bioactive composite scaffolds for bone tissue engineering , 2017, Bioactive materials.

[5]  Jiangyu Li,et al.  Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. , 2017, Biomaterials.

[6]  Miguel Cerrolaza,et al.  Analysis of Bone Remodeling Under Piezoelectricity Effects Using Boundary Elements , 2017 .

[7]  Namdev More,et al.  Piezoelectric material - A promising approach for bone and cartilage regeneration. , 2017, Medical hypotheses.

[8]  Ulrich Gabbert,et al.  NOISE CONTROL OF VEHICLE DRIVE SYSTEMS , 2017 .

[9]  Mahbub Hassan,et al.  A Survey of Wearable Devices and Challenges , 2017, IEEE Communications Surveys & Tutorials.

[10]  Yang Shen,et al.  Nanocomposite Membranes Enhance Bone Regeneration Through Restoring Physiological Electric Microenvironment. , 2016, ACS nano.

[11]  Senentxu Lanceros-Méndez,et al.  Piezoelectric polymers as biomaterials for tissue engineering applications. , 2015, Colloids and surfaces. B, Biointerfaces.

[12]  Jonghwa Park,et al.  Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli , 2015, Science Advances.

[13]  U. Nackenhorst,et al.  Computational simulation of piezo‐electrically stimulated bone remodeling surrounding teeth implant , 2015 .

[14]  S. Naili,et al.  Three-Scale Multiphysics Modeling of Transport Phenomena within Cortical Bone , 2015 .

[15]  Michael Jaffe,et al.  Piezoelectric materials for tissue regeneration: A review. , 2015, Acta biomaterialia.

[16]  Liesbet Geris,et al.  Bringing computational models of bone regeneration to the clinic , 2015, Wiley interdisciplinary reviews. Systems biology and medicine.

[17]  P. Bisegna,et al.  New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications , 2015 .

[18]  Anath Fischer,et al.  On the Road to Personalized Medicine: Multiscale Computational Modeling of Bone Tissue , 2014 .

[19]  B. Reid,et al.  The Electrical Response to Injury: Molecular Mechanisms and Wound Healing. , 2014, Advances in wound care.

[20]  Juan Fang,et al.  A Femur-Implant Model for the Prediction of Bone Remodeling Behavior Induced by Cementless Stem , 2013 .

[21]  A. Ramírez-Martínez,et al.  Numerical test concerning bone mass apposition under electrical and mechanical stimulus , 2012, Theoretical Biology and Medical Modelling.

[22]  J M García-Aznar,et al.  Piezoelectricity could predict sites of formation/resorption in bone remodelling and modelling. , 2012, Journal of theoretical biology.

[23]  V Sansalone,et al.  What is the importance of multiphysical phenomena in bone remodelling signals expression? A multiscale perspective. , 2011, Journal of the mechanical behavior of biomedical materials.

[24]  E. Rohan,et al.  A Multiscale Theoretical Investigation of Electric Measurements in Living Bone , 2011, Bulletin of mathematical biology.

[25]  Vu-Hieu Nguyen,et al.  Influence of interstitial bone microcracks on strain-induced fluid flow , 2011, Biomechanics and modeling in mechanobiology.

[26]  Christopher Price,et al.  Real-Time Measurement of Solute Transport Within the Lacunar-Canalicular System of Mechanically Loaded Bone: Direct Evidence for Load-Induced Fluid Flow , 2010, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[27]  U. Edlund,et al.  Fluid pressure and flow as a cause of bone resorption , 2010, Acta orthopaedica.

[28]  Vu-Hieu Nguyen,et al.  Poroelastic behaviour of cortical bone under harmonic axial loading: a finite element study at the osteonal scale. , 2010, Medical engineering & physics.

[29]  R. Kwon,et al.  Microfluidic Enhancement of Intramedullary Pressure Increases Interstitial Fluid Flow and Inhibits Bone Loss in Hindlimb Suspended Mice , 2010, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[30]  M. Minary‐Jolandan,et al.  Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. , 2009, ACS nano.

[31]  Q. Qin,et al.  Macro-Micro Theory on Multifield Coupling Behavior of Heterogeneous Materials , 2009 .

[32]  Andrew C Ahn,et al.  Relevance of collagen piezoelectricity to "Wolff's Law": a critical review. , 2009, Medical engineering & physics.

[33]  Majid Minary-Jolandan,et al.  Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity , 2009, Nanotechnology.

[34]  H. Donahue,et al.  From streaming‐potentials to shear stress: 25 years of bone cell mechanotransduction , 2009, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[35]  S. Ramtani,et al.  Electro-mechanics of bone remodelling , 2008 .

[36]  Dennis R. Carter,et al.  The mechanobiological effects of periosteal surface loads , 2008, Biomechanics and modeling in mechanobiology.

[37]  M Predoi-Racila,et al.  Human cortical bone: the SiNuPrOs model , 2008, Computer methods in biomechanics and biomedical engineering.

[38]  Thibault Lemaire,et al.  Study of the influence of fibrous pericellular matrix in the cortical interstitial fluid movement with hydroelectrochemical effects. , 2008, Journal of biomechanical engineering.

[39]  Anne Marie Kuijpers-Jagtman,et al.  Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. , 2007, Bone.

[40]  Z. Horak,et al.  The course of osteons in the compact bone of the human proximal femur with clinical and biomechanical significance , 2007, Surgical and Radiologic Anatomy.

[41]  Manuel Doblaré,et al.  External bone remodeling through boundary elements and damage mechanics , 2006, Math. Comput. Simul..

[42]  Jenneke Klein-Nulend,et al.  Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. , 2006, Biochemical and biophysical research communications.

[43]  Chuanyong Qu,et al.  A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads. , 2006, Biomaterials.

[44]  Thibault Lemaire,et al.  Multiscale analysis of the coupled effects governing the movement of interstitial fluid in cortical bone , 2006, Biomechanics and modeling in mechanobiology.

[45]  S. Cowin,et al.  Analysis of avian bone response to mechanical loading, Part Two: Development of a computational connected cellular network to study bone intercellular communication , 2005, Biomechanics and modeling in mechanobiology.

[46]  Béatrice Labat,et al.  Piezomaterials for bone regeneration design—homogenization approach ☆ , 2005 .

[47]  S. Cowin,et al.  Analysis of avian bone response to mechanical loading—Part One: Distribution of bone fluid shear stress induced by bending and axial loading , 2005, Biomechanics and modeling in mechanobiology.

[48]  Sheldon Weinbaum,et al.  Mechanotransduction and strain amplification in osteocyte cell processes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Walter H. Chang,et al.  Effect of pulse‐burst electromagnetic field stimulation on osteoblast cell activities , 2004, Bioelectromagnetics.

[50]  Jianqiao Ye,et al.  Thermoelectroelastic solutions for internal bone remodeling under axial and transverse loads , 2004 .

[51]  Alan Boyde,et al.  Circularly polarized light standards for investigations of collagen fiber orientation in bone. , 2003, Anatomical record. Part B, New anatomist.

[52]  Eduard Rohan,et al.  Sensitivity strategies in modelling heterogeneous media undergoing finite deformation , 2003, Math. Comput. Simul..

[53]  B. Beck,et al.  On the Relationship Between Streaming Potential and Strain in an in vivo Bone preparation , 2002, Calcified Tissue International.

[54]  C. Rubin,et al.  The Pathway of Bone Fluid Flow as Defined by In Vivo Intramedullary Pressure and Streaming Potential Measurements , 2002, Annals of Biomedical Engineering.

[55]  Dimitrios I. Fotiadis,et al.  A poroelastic bone model for internal remodeling , 2002 .

[56]  U. Joos,et al.  Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. , 2001, Biochimica et biophysica acta.

[57]  B. Boyan,et al.  Pulsed electromagnetic field stimulation of MG63 osteoblast‐like cells affects differentiation and local factor production , 2000, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[58]  Javad Dargahi,et al.  A piezoelectric tactile sensor with three sensing elements for robotic, endoscopic and prosthetic applications , 2000 .

[59]  E H Burger,et al.  Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. , 2000, Biochemical and biophysical research communications.

[60]  C. Rubin,et al.  Does bone perfusion/reperfusion initiate bone remodeling and the stress fracture syndrome? , 1999, Medical hypotheses.

[61]  Dimitrios I. Fotiadis,et al.  Wave propagation modeling in human long bones , 1999 .

[62]  Xing‐dong Zhang,et al.  Promotion of osteogenesis by a piezoelectric biological ceramic , 1997 .

[63]  L. A. MacGinitie,et al.  Bone streaming potentials and currents depend on anatomical structure and loading orientation. , 1997, Journal of biomechanics.

[64]  R. Zernicke,et al.  Strain Gradients Correlate with Sites of Exercise‐Induced Bone‐Forming Surfaces in the Adult Skeleton , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[65]  R Langer,et al.  Stimulation of neurite outgrowth using an electrically conducting polymer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[66]  C. Brighton,et al.  Electrical stimulation induces the level of TGF-beta1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. , 1997, Biochemical and biophysical research communications.

[67]  F. Jaroszyk,et al.  Dielectric studies of proton transport in air-dried fully calcified and decalcified bone. , 1996, International journal of biological macromolecules.

[68]  S. Cowin,et al.  A case for bone canaliculi as the anatomical site of strain generated potentials. , 1995, Journal of biomechanics.

[69]  H. Grootenboer,et al.  The behavior of adaptive bone-remodeling simulation models. , 1992, Journal of biomechanics.

[70]  G. Cochran,et al.  A comparative analysis of streaming potentials in vivo and in vitro , 1992, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[71]  G W Hastings,et al.  Electrical effects in bone. , 1988, Journal of biomedical engineering.

[72]  M. Otter,et al.  Streaming potentials in chemically modified bone , 1988, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[73]  P. Dario,et al.  Piezoelectric nerve guidance channels enhance peripheral nerve regeneration. , 1987, ASAIO transactions.

[74]  M. Poo,et al.  Orientation of neurite growth by extracellular electric fields , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  S Rakowski,et al.  Mechano-electrical properties of bone. , 1981, Biomaterials.

[76]  S. Pollack,et al.  Microelectrode studies of stress-generated potentials in four-point bending of bone. , 1979, Journal of biomedical materials research.

[77]  S. Pollack,et al.  Microelectrode study of stress-generated potentials obtained from uniform and nonuniform compression of human bone. , 1979, Journal of biomedical materials research.

[78]  S. Pollack,et al.  Stress-generated potentials in bone: effects of collagen modifications. , 1977, Journal of biomedical materials research.

[79]  R. J. Pawluk,et al.  A non-operative salvage of surgically-resistant pseudarthroses and non-unions by pulsing electromagnetic fields. A preliminary report. , 1977, Clinical orthopaedics and related research.

[80]  A. R. Liboff,et al.  PYROELECTRIC EFFECT IN COLLAGENOUS STRUCTURES , 1974 .

[81]  E. Korostoff,et al.  Deformation potentials in whole bone. , 1973, The Journal of surgical research.

[82]  R. Becker,et al.  Electrical stimulation of partial limb regeneration in mammals. , 1972, Bulletin of the New York Academy of Medicine.

[83]  R. Becker Stimulation of Partial Limb Regeneration in Rats , 1972, Nature.

[84]  S. Edelman,et al.  Piezoelectric Effect in Oriented Polyvinylchloride and Polyvinylflouride , 1971 .

[85]  Eiichi Fukada,et al.  Piezoelectric Constant in Oriented β-form Polypeptides , 1971 .

[86]  H. Athenstaedt Permanent Longitudinal Electric Polarization and Pyroelectric Behaviour of Collagenous Structures and Nervous Tissue in Man and other Vertebrates , 1970, Nature.

[87]  J. Anderson,et al.  Piezoelectric Properties of Dry and Wet Bone , 1970, Nature.

[88]  E. Fukada,et al.  Piezoelectric Effect in Muscle , 1970 .

[89]  E. Fukada,et al.  Piezoelectric effect in blood vessel walls , 1969 .

[90]  E. Fukada,et al.  Mechnical deformation and electrical polarization in biological substances. , 1968, Biorheology.

[91]  R. J. Pawluk,et al.  Electromechanical characteristics of bone under physiologic moisture conditions. , 1968, Clinical orthopaedics and related research.

[92]  C A Bassett,et al.  Biologic significance of piezoelectricity , 1967, Calcified tissue research.

[93]  C. Brighton,et al.  Bioelectric potentials in bone. , 1966, The Journal of bone and joint surgery. American volume.

[94]  H. Frost The Laws of Bone Structure , 1965 .

[95]  R. J. Pawluk,et al.  Effects of Electric Currents on Bone In Vivo , 1964, Nature.

[96]  Eiichi Fukada,et al.  Piezoelectric Effects in Collagen , 1964 .

[97]  C. Andrew L. Bassett,et al.  Generation of Electric Potentials by Bone in Response to Mechanical Stress , 1962, Science.

[98]  R. Becker Search for Evidence of Axial Current Flow in Peripheral Nerves of Salamander , 1961, Science.

[99]  Eiichi Fukada,et al.  On the Piezoelectric Effect of Bone , 1957 .

[100]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[101]  Jaydev P. Desai,et al.  Electromechanical Coupling Factor of Breast Tissue as a Biomarker for Breast Cancer , 2018, IEEE Transactions on Biomedical Engineering.

[102]  Seungbum Hong Piezoelectric Materials for Medical Applications Piezoelectric Materials for Medical Applications , 2018 .

[103]  Salah Naili,et al.  Multiscale Approach to Understand the Multiphysics Phenomena in Bone Adaptation , 2013 .

[104]  V. Mattoli,et al.  Applications of Piezoelectricity in Nanomedicine , 2012 .

[105]  Arianna Menciassi,et al.  Piezoelectric Nanomaterials for Biomedical Applications , 2012 .

[106]  Shou-wen Yu,et al.  The damage and healing of bone in the disuse state under mechanical and electro-magnetic loadings , 2011 .

[107]  Sheldon Weinbaum,et al.  Fluid and Solute Transport in Bone: Flow-Induced Mechanotransduction. , 2009, Annual review of fluid mechanics.

[108]  Wei Yao,et al.  Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. , 2008, Bone.

[109]  H. Athenstaedt Permanent electric polarization and pyroelectric behaviour of the vertebrate skeleton , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[110]  R. Martin,et al.  Is all cortical bone remodeling initiated by microdamage? , 2002, Bone.

[111]  P. Lehenkari,et al.  Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. , 2001, Ultramicroscopy.

[112]  W. Walsh,et al.  Piezoelectric and Electrokinetic Effects in Bone Tissue–Review , 1993 .

[113]  G W Hastings,et al.  Model to characterize strain generated potentials in bone. , 1988, Journal of biomedical engineering.

[114]  H. Grootenboer,et al.  Adaptive bone-remodeling theory applied to prosthetic-design analysis. , 1987, Journal of biomechanics.

[115]  M. Otter,et al.  Evidence for different sources of stress‐generated potentials in wet and dry bone , 1985, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[116]  S. Pollack,et al.  An anatomical model for streaming potentials in osteons. , 1984, Journal of biomechanics.

[117]  S. Pollack,et al.  The origin of stress‐generated potentials in fluid‐saturated bone , 1983, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[118]  D. Gross,et al.  Streaming potential and the electromechanical response of physiologically-moist bone. , 1982, Journal of biomechanics.

[119]  M. W. Johnson,et al.  Ceramic models for piezoelectricity in dry bone. , 1980, Journal of biomechanics.

[120]  E. Korostoff,et al.  A linear piezoelectric model for characterizing stress generated potentials in bone. , 1979, Journal of biomechanics.

[121]  M A El Messiery,et al.  Ferro-electricity of dry cortical bone. , 1979, Journal of biomedical engineering.

[122]  Hilmi Demiray,et al.  Electromechanical properties and related models of bone tissues: A review , 1979 .

[123]  W. Williams,et al.  Piezoelectricity in tendon and bone. , 1975, Journal of biomechanics.

[124]  R. Becker The significance of bioelectric potentials , 1974 .

[125]  A. Gjelsvik,et al.  Bone remodeling and piezoelectricity. I. , 1973, Journal of biomechanics.