Complexity of common subsequence and supersequence problems and related problems

The article examines polynomial-time and intractable longest common subsequence and subword problems and shortest common supersequence and superword problems, both old and new. The results provide a more complete complexity characterization of these problems. Some applications are discussed, as well as the dual problems of common nonsubwords, nonsuperwords, nonsubsequences, and nonsupersequences.

[1]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[2]  Peter Weiner,et al.  Linear Pattern Matching Algorithms , 1973, SWAT.

[3]  David Maier,et al.  On Finding Minimal Length Superstrings , 1980, J. Comput. Syst. Sci..

[4]  Daniel S. Hirschberg,et al.  A linear space algorithm for computing maximal common subsequences , 1975, Commun. ACM.

[5]  Edward M. McCreight,et al.  A Space-Economical Suffix Tree Construction Algorithm , 1976, JACM.

[6]  Richard C. T. Lee,et al.  The mapping of 2-D array processors to 1-D array processors , 1986, Parallel Comput..

[7]  E. Reingold,et al.  Combinatorial Algorithms: Theory and Practice , 1977 .

[8]  A. Nijenhuis Combinatorial algorithms , 1975 .

[9]  Michael L. Fredman,et al.  On computing the length of longest increasing subsequences , 1975, Discret. Math..

[10]  Daniel S. Hirschberg,et al.  Algorithms for the Longest Common Subsequence Problem , 1977, JACM.

[11]  D Sankoff,et al.  A test for nucleotide sequence homology. , 1973, Journal of molecular biology.

[12]  Michael Rodeh,et al.  Linear Algorithm for Data Compression via String Matching , 1981, JACM.

[13]  Peter H. Sellers,et al.  An Algorithm for the Distance Between Two Finite Sequences , 1974, J. Comb. Theory, Ser. A.

[14]  David Maier,et al.  The Complexity of Some Problems on Subsequences and Supersequences , 1978, JACM.

[15]  King-Sun Fu,et al.  A Sentence-to-Sentence Clustering Procedure for Pattern Analysis , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Thomas G. Szymanski,et al.  A fast algorithm for computing longest common subsequences , 1977, CACM.

[17]  Arto Salomaa Jewels of formal language theory , 1981 .

[18]  Zvi Galil,et al.  String Matching in Real Time , 1981, JACM.

[19]  Robert A. Wagner,et al.  An Extension of the String-to-String Correction Problem , 1975, JACM.

[20]  Michael J. Fischer,et al.  The String-to-String Correction Problem , 1974, JACM.

[21]  M. O. Dayhoff Computer analysis of protein evolution. , 1969, Scientific American.

[22]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[23]  Trevor I. Dix,et al.  A Bit-String Longest-Common-Subsequence Algorithm , 1986, Inf. Process. Lett..

[24]  M. W. Du,et al.  New Algorithms for the LCS Problem , 1984, J. Comput. Syst. Sci..

[25]  Mike Paterson,et al.  A Faster Algorithm Computing String Edit Distances , 1980, J. Comput. Syst. Sci..

[26]  Amar Mukhopadhyay A fast algorithm for the longest-common-subsequence problem , 1980, Inf. Sci..

[27]  Chak-Kuen Wong,et al.  Bounds for the String Editing Problem , 1976, JACM.

[28]  Yu. V. Matiyasevich Real-time recognition of the inclusion relation , 1972 .

[29]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[30]  M O Dayhoff Computer aids to protein sequence determination. , 1965, Journal of theoretical biology.

[31]  Alfred V. Aho,et al.  Bounds on the Complexity of the Longest Common Subsequence Problem , 1976, J. ACM.