On generalized fractional Cattaneo’s equations

This paper studies a family of generalized fractional Cattaneo’s equations for which passive (i.e., spontaneous) transport is possible. This is done by using fractional substitutions in integer-order rational transfer functions and showing conditions for positive realness.

[1]  Mark M. Meerschaert,et al.  Triangular array limits for continuous time random walks , 2008 .

[2]  David A. Benson,et al.  A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations , 2009 .

[3]  Maggs,et al.  Subdiffusion and Anomalous Local Viscoelasticity in Actin Networks. , 1996, Physical review letters.

[4]  Compte,et al.  Stochastic foundations of fractional dynamics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Stevan Pilipović,et al.  A diffusion wave equation with two fractional derivatives of different order , 2007 .

[6]  Igor M. Sokolov,et al.  Ballistic versus diffusive pair dispersion in the Richardson regime , 2000 .

[7]  V E Lynch,et al.  Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. , 2002, Physical review letters.

[8]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[9]  J. Álvarez-Ramírez,et al.  A high-order extension for the Cattaneo's diffusion equation , 2006 .

[10]  David A. Benson,et al.  Advection and dispersion in time and space , 2002 .

[11]  Vladimir V. Uchaikin,et al.  Fractional theory for transport in disordered semiconductors , 2008 .

[12]  A. Iomin,et al.  Toy model of fractional transport of cancer cells due to self-entrapping. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Xiaohong Joe Zhou,et al.  Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. , 2008, Journal of magnetic resonance.

[14]  F. Mainardi The fundamental solutions for the fractional diffusion-wave equation , 1996 .

[15]  Ralf Metzler,et al.  FRACTIONAL DIFFUSION, WAITING-TIME DISTRIBUTIONS, AND CATTANEO-TYPE EQUATIONS , 1998 .

[16]  Mark M. Meerschaert,et al.  Erratum to Triangular array limits for continuous time random walks [Stochastic Process. Appl. 118 (9) (2008) 1606-1633] , 2010 .

[17]  B. Brogliato,et al.  Dissipative Systems Analysis and Control , 2000 .

[18]  Rina Schumer,et al.  Fractal mobile/immobile solute transport , 2003 .

[19]  A. Compte,et al.  The generalized Cattaneo equation for the description of anomalous transport processes , 1997 .

[20]  Jose Alvarez-Ramirez,et al.  Effective medium equation for fractional Cattaneo's diffusion and heterogeneous reaction in disordered porous media , 2006 .

[21]  G. Bohannan Analog Fractional Order Controller in Temperature and Motor Control Applications , 2008 .