Corset-like solid electrolyte interface for fast charging of silicon wire anodes

Abstract The most challenging tasks in today's batteries are the need for fast charging and large energy densities for longer lifetimes. Micro-structured silicon microwire anodes show a nine-fold increase in gravimetric capacity over standard graphite batteries. The anodes exhibit an areal capacity of 4.25 mAhcm−2 with a specific capacity of 3150 mAhg−1. The high specific capacity implies a 400% volume expansion of the Si wires. This paper demonstrates that by modifying and adapting the electrolyte composition a charging speed of 5 C (12 min charging time) can be reached completely maintaining the area and gravimetric capacity of the silicon anodes. Detailed analysis of the charge transfer processes across the solid electrolyte interface into the silicon wires reveals highly relevant mechanisms for this stable performance. A well-established solvent candidate, like propylene carbonate, which was rated not at all suitable for graphite electrodes, is very promising and advancing fast for pure silicon anodes. This addition into the electrolyte allows modifying the mechanical properties of the SEI layer in oder to support revery individual silicon wire to buffer the inevitable volume expansion.

[1]  Doron Aurbach,et al.  Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: a surface chemical investigation. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[2]  J. Fontanella,et al.  Dynamics in propylene carbonate and propylene carbonate containing LiPF6 , 1999 .

[3]  Jiulin Wang,et al.  A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries , 2016, Scientific Reports.

[4]  K. M. Abraham,et al.  Thermal stability of lithium-ion battery electrolytes , 2003 .

[5]  A. Heuberger,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I . Orientation Dependence and Behavior of Passivation Layers , 1990 .

[6]  N. Angulakshmi,et al.  Efficient Electrolytes for Lithium–Sulfur Batteries , 2015, Front. Energy Res..

[7]  R. Adelung,et al.  (Re-)crystallization mechanism of highly oriented Si-microwire arrays by TEM analysis , 2017, Journal of Solid State Electrochemistry.

[8]  Enge Wang,et al.  First principles study of lithium insertion in bulk silicon , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  E. Quiroga‐González,et al.  Size-dependent cyclic voltammetry study of silicon microwire anodes for lithium ion batteries , 2016 .

[10]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[11]  Doron Aurbach,et al.  Design of electrolyte solutions for Li and Li-ion batteries: a review , 2004 .

[12]  Zhengcheng Zhang,et al.  Advanced electrolyte/additive for lithium-ion batteries with silicon anode , 2016 .

[13]  G. Nazri,et al.  Vibrational Spectra and Ion-Pair Properties of Lithium Hexafluorophosphate in Ethylene Carbonate Based Mixed-Solvent Systems for Lithium Batteries , 2000 .

[14]  C. Hasenack,et al.  A mechanism for electroless Cu plating onto Si , 1997 .

[15]  K. Hayamizu Temperature Dependence of Self-Diffusion Coefficients of Ions and Solvents in Ethylene Carbonate, Propylene Carbonate, and Diethyl Carbonate Single Solutions and Ethylene Carbonate + Diethyl Carbonate Binary Solutions of LiPF6 Studied by NMR , 2012 .

[16]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[17]  Michael J. Hoffmann,et al.  Studies on preventing Li dendrite formation in Li–S batteries by using pre-lithiated Si microwire anodes , 2014 .

[18]  Harald Giessen,et al.  Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles , 2007 .

[19]  Yan Wang,et al.  A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries , 2016 .

[20]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[21]  H. Kim,et al.  The cycling performances of lithium–sulfur batteries in TEGDME/DOL containing LiNO3 additive , 2013, Ionics.

[22]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[23]  Daniel Lemordant,et al.  Comparative study of EC/DMC LiTFSI and LiPF 6 electrolytes for electrochemical storage , 2011 .

[24]  Shengbo Zhang,et al.  Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions , 2013 .

[25]  Daniel M. Seo,et al.  Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate , 2013 .

[26]  Brett L. Lucht,et al.  Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries , 2005 .

[27]  Debasish Mohanty,et al.  The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling , 2016 .

[28]  K. Komvopoulos,et al.  Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries , 2016, Nature Communications.

[29]  R. Maboudian,et al.  Copper Deposition onto Silicon by Galvanic Displacement: Effect of Silicon Dissolution Rate , 2008 .

[30]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .

[31]  M. Amirmaleki,et al.  The Role of Polyethylene Glycol in Pore Diameter Modulation in Depth in p-Type Silicon , 2013 .

[32]  Miho Fujita,et al.  Conductivity and Solvation of Li+ Ions of LiPF6 in Propylene Carbonate Solutions , 2000 .

[33]  John B. Kerr,et al.  The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge , 2003 .

[34]  Kang Xu,et al.  EIS study on the formation of solid electrolyte interface in Li-ion battery , 2006 .

[35]  Efthimios Kaxiras,et al.  Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF. , 2015, Physical chemistry chemical physics : PCCP.

[36]  Qi Li,et al.  Progress in electrolytes for rechargeable Li-based batteries and beyond , 2016 .

[37]  R. Adelung,et al.  Size-dependent physicochemical and mechanical interactions in battery paste anodes of Si-microwires revealed by Fast-Fourier-Transform Impedance Spectroscopy , 2017 .

[38]  Valentin Muenzel,et al.  A Comparative Testing Study of Commercial 18650-Format Lithium-Ion Battery Cells , 2015 .

[39]  D. Goldsack,et al.  The viscosity of concentrated electrolyte solutions—III. A mixture law , 1977 .

[40]  Daniel M. Seo,et al.  Reduction Reactions of Carbonate Solvents for Lithium Ion Batteries , 2014 .

[41]  A. Dey,et al.  The Electrochemical Decomposition of Propylene Carbonate on Graphite , 1970 .

[42]  E. Quiroga‐González,et al.  Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries , 2013, Materials.

[43]  E. Quiroga‐González,et al.  Electrochemical Fabrication and Characterization of Silicon Microwire Anodes for Li Ion Batteries , 2016 .

[44]  Robert Dominko,et al.  The Importance of Interphase Contacts in Li Ion Electrodes: The Meaning of the High-Frequency Impedance Arc , 2008 .

[45]  J. Eckert,et al.  Role of 1,3-Dioxolane and LiNO3 Addition on the Long Term Stability of Nanostructured Silicon/Carbon Anodes for Rechargeable Lithium Batteries , 2016 .

[46]  Z. Suo,et al.  Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. , 2012, Nano letters.

[47]  Hui Yang,et al.  A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR-FTIR Spectroscopy , 2005 .

[48]  H. Föll,et al.  Parameter Dependence of Pore Formation in Silicon within a Model of Local Current Bursts , 2000 .

[49]  E. Quiroga‐González,et al.  How to Make Optimized Arrays of Si Wires Suitable as Superior Anode for Li-Ion Batteries , 2011, ECS Transactions.

[50]  Anming Hu,et al.  Si-Based Anode Materials for Li-Ion Batteries: A Mini Review , 2014, Nano-Micro Letters.

[51]  E. Quiroga‐González,et al.  Optimal Conditions for Fast Charging and Long Cycling Stability of Silicon Microwire Anodes for Lithium Ion Batteries, and Comparison with the Performance of Other Si Anode Concepts , 2013 .

[52]  Teng Li,et al.  Intrinsic stress mitigation via elastic softening during two-step electrochemical lithiation of amorphous silicon , 2016 .

[53]  John B. Goodenough,et al.  Challenges for rechargeable batteries , 2011 .

[54]  Morphology of macro-pores formed by electrochemical etching of p-type Si , 2004 .

[55]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[56]  Hui Zhao,et al.  Propylene Carbonate (PC)-Based Electrolytes with High Coulombic Efficiency for Lithium-Ion Batteries , 2014 .

[57]  N. Bernstein,et al.  Amorphous-crystal interface in silicon: A tight-binding simulation , 1998, cond-mat/9805092.

[58]  Volker Lehmann,et al.  Electrochemistry of Silicon , 2002 .

[59]  K. Stevenson,et al.  Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions , 2012 .

[60]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[61]  R. Ewell The Reaction Rate Theory of Viscosity and Some of its Applications , 1938 .

[62]  J. K. Thomas,et al.  Rate constants for reactions in viscous media: correlation between the viscosity of the solvent and the rate constant of the diffusion-controlled reactions , 1988 .

[63]  S. Ball “Electrolytes for Lithium and Lithium-Ion Batteries” , 2015 .

[64]  Liangbing Hu,et al.  Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy , 2013 .

[65]  Kejie Zhao,et al.  Electrochemomechanics of Electrodes in Li-Ion Batteries: A Review , 2016 .