How often are chaotic saddles nonhyperbolic

The authors numerically investigate the fraction of nonhyperbolic parameter values in chaotic dynamical systems. By a nonhyperbolic parameter value they mean a parameter value at which there are tangencies between some stable and unstable manifolds. The nonhyperbolic parameter values are important because the dynamics in such cases is especially pathological. For example, near each such parameter value, there is another parameter value at which there are infinitely many coexisting attractors. In particular, Newhouse and Robinson (1983) proved that the existence of one nonhyperbolic parameter value typically implies the existence of an interval ('a Newhouse interval') of nonhyperbolic parameter values. They numerically compute the fraction of nonhyperbolic parameter values for the Henon map in the parameter range where there exist only chaotic saddles (i.e., nonattracting invariant chaotic sets). They discuss a theoretical model which predicts the fraction of nonhyperbolic parameter values for small Jacobians.

[1]  S. Newhouse,et al.  The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms , 1979 .

[2]  Grebogi,et al.  Unstable periodic orbits and the dimensions of multifractal chaotic attractors. , 1988, Physical review. A, General physics.

[3]  James A. Yorke,et al.  How often do simple dynamical processes have infinitely many coexisting sinks? , 1986 .

[4]  Grebogi,et al.  Critical exponents for crisis-induced intermittency. , 1987, Physical review. A, General physics.

[5]  Celso Grebogi,et al.  Strange saddles and the dimensions of their invariant-manifolds , 1988 .

[6]  Celso Grebogi,et al.  Numerical orbits of chaotic processes represent true orbits , 1988 .

[7]  Grebogi,et al.  Shadowing of physical trajectories in chaotic dynamics: Containment and refinement. , 1990, Physical review letters.

[8]  Clark Robinson,et al.  Bifurcation to infinitely many sinks , 1983 .

[9]  James A. Yorke,et al.  CALCULATING STABLE AND UNSTABLE MANIFOLDS , 1991 .

[10]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[11]  Stephen M. Hammel,et al.  A noise reduction method for chaotic systems , 1990 .

[12]  Grebogi,et al.  Unstable periodic orbits and the dimension of chaotic attractors. , 1987, Physical review. A, General physics.

[13]  R. Bowen ω-Limit sets for Axiom A diffeomorphisms , 1975 .

[14]  James A. Yorke,et al.  A procedure for finding numerical trajectories on chaotic saddles , 1989 .

[15]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[16]  Celso Grebogi,et al.  Do numerical orbits of chaotic dynamical processes represent true orbits? , 1987, J. Complex..