暂无分享,去创建一个
[1] Anne-Sophie Bonnet-Ben Dhia,et al. Perfectly Matched Layers for Time-Harmonic Acoustics in the Presence of a Uniform Flow , 2006, SIAM J. Numer. Anal..
[2] Patrick Joly,et al. Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .
[3] Lucas Chesnel,et al. On the use of Perfectly Matched Layers at corners for scattering problems with sign-changing coefficients , 2015, J. Comput. Phys..
[4] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[5] Peter Monk,et al. The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..
[6] Matti Lassas,et al. On the existence and convergence of the solution of PML equations , 1998, Computing.
[7] Morten Hjorth-Jensen. Eigenvalue Problems , 2021, Explorations in Numerical Analysis.
[8] Joseph E. Pasciak,et al. Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem , 2010, Math. Comput..
[9] Salvatore Caorsi,et al. On the Convergence of Galerkin Finite Element Approximations of Electromagnetic Eigenproblems , 2000, SIAM J. Numer. Anal..
[10] N. Moiseyev,et al. Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling , 1998 .
[11] Lothar Nannen,et al. Complex scaled infinite elements for exterior Helmholtz problems , 2019, ArXiv.
[12] Otto Karma,et al. Approximation in eigenvalue problems for holomorphic fredholm operator functions I , 1996 .
[13] Martin Halla,et al. Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility , 2019, Numerische Mathematik.
[14] Barry Simon,et al. Resonances and complex scaling: a rigorous overview , 1978 .
[15] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[16] Lexing Ying,et al. Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..
[17] É. Bécache,et al. Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: Necessary and sufficient conditions of stability , 2017 .
[18] D. Arnold,et al. Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.
[19] Alfredo Bermúdez,et al. An Exact Bounded Perfectly Matched Layer for Time-Harmonic Scattering Problems , 2007, SIAM J. Sci. Comput..
[20] Israel Michael Sigal,et al. Introduction to Spectral Theory , 1996 .
[21] J. Rappaz,et al. On spectral approximation. Part 1. The problem of convergence , 1978 .
[22] Zhiming Chen,et al. An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems , 2005 .
[23] Xiaohui Zhang,et al. Convergence of the PML method for elastic wave scattering problems , 2016, Math. Comput..
[24] Anne-Sophie Bonnet-Ben Dhia,et al. Perfectly Matched Layers for the Convected Helmholtz Equation , 2004, SIAM J. Numer. Anal..
[25] Joachim Schöberl,et al. Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs , 2016, Numerische Mathematik.
[26] Stefan Hein,et al. Acoustic resonances in a high-lift configuration , 2007, Journal of Fluid Mechanics.
[27] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[28] Julien Diaz,et al. A time domain analysis of PML models in acoustics , 2006 .
[29] W. Koch,et al. On resonances in open systems , 2004, Journal of Fluid Mechanics.
[30] M. Halla,et al. Hardy space infinite elements for time-harmonic two-dimensional elastic waveguide problems , 2015, 1506.04781.
[31] Joseph E. Pasciak,et al. The computation of resonances in open systems using a perfectly matched layer , 2009, Math. Comput..
[32] Alfredo Bermúdez,et al. An exact bounded PML for the Helmholtz equation , 2004 .
[33] Silvia Bertoluzza,et al. The discrete commutator property of approximation spaces , 1999 .
[34] Lothar Nannen,et al. Two scale Hardy space infinite elements for scalar waveguide problems , 2018, Adv. Comput. Math..
[35] Thorsten Hohage,et al. Hardy Space Infinite Elements for Scattering and Resonance Problems , 2009, SIAM J. Numer. Anal..
[36] Olaf Steinbach,et al. A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator , 2009, Numerische Mathematik.
[37] Martin Halla. Convergence of Hardy Space Infinite Elements for Helmholtz Scattering and Resonance Problems , 2016, SIAM J. Numer. Anal..
[38] Frank Schmidt,et al. Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..
[39] Weng Cho Chew,et al. A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .
[40] T. Hagstrom. Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.
[41] Patrick Joly,et al. Mathematical models for dispersive electromagnetic waves: An overview , 2017, Comput. Math. Appl..
[42] D. Givoli. Numerical Methods for Problems in Infinite Domains , 1992 .
[43] Philippe Lalanne,et al. Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.
[44] T. Hohage,et al. Convergence of infinite element methods for scalar waveguide problems , 2014, 1409.6450.
[45] E. A. Skelton,et al. Guided elastic waves and perfectly matched layers , 2007 .
[46] Lexing Ying,et al. Additive Sweeping Preconditioner for the Helmholtz Equation , 2015, Multiscale Model. Simul..
[47] Annalisa Buffa,et al. Remarks on the Discretization of Some Noncoercive Operator with Applications to Heterogeneous Maxwell Equations , 2005, SIAM J. Numer. Anal..
[48] Joseph E. Pasciak,et al. Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems , 2006, Math. Comput..
[49] Gang Bao,et al. Convergence Analysis of the Perfectly Matched Layer Problemsfor Time-Harmonic Maxwell's Equations , 2005, SIAM J. Numer. Anal..
[50] Ragnar Winther,et al. On variational eigenvalue approximation of semidefinite operators , 2010, 1005.2059.
[51] Seungil Kim,et al. Analysis of a pml method applied to computation of resonances in open systems and acoustic scattering problems , 2009 .
[52] W. Chew,et al. Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates , 1997 .