Fast Directional Multilevel Algorithms for Oscillatory Kernels

This paper introduces a new directional multilevel algorithm for solving $N$-body or $N$-point problems with highly oscillatory kernels. These systems often result from the boundary integral formulations of scattering problems and are difficult due to the oscillatory nature of the kernel and the non-uniformity of the particle distribution. We address the problem by first proving that the interaction between a ball of radius $r$ and a well-separated region has an approximate low rank representation, as long as the well-separated region belongs to a cone with a spanning angle of $O(1/r)$ and is at a distance which is at least $O(r^2)$ away from from the ball. We then propose an efficient and accurate procedure which utilizes random sampling to generate such a separated, low rank representation. Based on the resulting representations, our new algorithm organizes the high frequency far field computation by a multidirectional and multiscale strategy to achieve maximum efficiency. The algorithm performs well on a large group of highly oscillatory kernels. Our algorithm is proved to have $O(N\log N)$ computational complexity for any given accuracy when the points are sampled from a two dimensional surface. We also provide numerical results to demonstrate these properties.

[1]  G. Toraldo di Francia Degrees of freedom of an image. , 1969, Journal of the Optical Society of America.

[2]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[3]  L. Greengard,et al.  Accelerating fast multipole methods for the Helmholtz equation at low frequencies , 1998 .

[4]  Sergej Rjasanow,et al.  Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.

[5]  V. Rokhlin,et al.  A randomized algorithm for the approximation of matrices , 2006 .

[6]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[7]  E. Michielssen,et al.  A multilevel matrix decomposition algorithm for analyzing scattering from large structures , 1996 .

[8]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[9]  Lexing Ying,et al.  A kernel independent fast multipole algorithm for radial basis functions , 2006, J. Comput. Phys..

[10]  M. Bleszynski,et al.  AIM: Adaptive integral method for solving large‐scale electromagnetic scattering and radiation problems , 1996 .

[11]  N. Nishimura Fast multipole accelerated boundary integral equation methods , 2002 .

[12]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[13]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[14]  M. Rudelson,et al.  Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[15]  Christopher R. Anderson,et al.  An Implementation of the Fast Multipole Method without Multipoles , 1992, SIAM J. Sci. Comput..

[16]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[17]  David E. Long,et al.  IES3: a fast integral equation solver for efficient 3-dimensional extraction , 1997, ICCAD.

[18]  Francis X. Canning Sparse Approximation for Solving Integral Equations with Oscillatory Kernels , 1992, SIAM J. Sci. Comput..

[19]  Bradley K. Alpert,et al.  A Fast Spherical Filter with Uniform Resolution , 1997 .

[20]  Jiming Song,et al.  Multilevel fast‐multipole algorithm for solving combined field integral equations of electromagnetic scattering , 1995 .

[21]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[22]  Michael A. Epton,et al.  Multipole Translation Theory for the Three-Dimensional Laplace and Helmholtz Equations , 1995, SIAM J. Sci. Comput..

[23]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[24]  V. Rokhlin Rapid Solution of Integral Equations of Scattering Theory , 1990 .

[25]  Norbert N. Bojarski,et al.  K-Space Formulation of the Electromagnetic Scattering Problem , 1972 .

[26]  Lexing Ying,et al.  A New Parallel Kernel-Independent Fast Multipole Method , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[27]  Ronald R. Coifman,et al.  Fast Numerical Computations of Oscillatory Integrals Related to Acoustic Scattering, I , 1993 .

[28]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .

[29]  W MahoneyMichael,et al.  Fast Monte Carlo Algorithms for Matrices III , 2006 .

[30]  Ronald R. Coifman,et al.  Wavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations , 1993, SIAM J. Sci. Comput..

[31]  Stefan Hurlebaus,et al.  Linear Elastic Waves , 2001 .

[32]  Kapur,et al.  IES/sup 3/: a fast integral equation solver for efficient 3-dimensional extraction , 1997, 1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[33]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[34]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[35]  Zydrunas Gimbutas,et al.  A wideband fast multipole method for the Helmholtz equation in three dimensions , 2006, J. Comput. Phys..

[36]  Laurent Demanet,et al.  Fast Computation of Fourier Integral Operators , 2006, SIAM J. Sci. Comput..

[37]  A. Brandt,et al.  Multilevel matrix multiplication and fast solution of integral equations , 1990 .

[38]  V. Rokhlin Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions , 1993 .

[39]  Ronald R. Coifman,et al.  Efficient Computation of Oscillatory Integrals via Adaptive Multiscale Local Fourier Bases , 2000 .

[40]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[41]  Eric Darve,et al.  The Fast Multipole Method , 2000 .

[42]  Petros Drineas,et al.  Fast Monte Carlo Algorithms for Matrices III: Computing a Compressed Approximate Matrix Decomposition , 2006, SIAM J. Comput..

[43]  E. Michielssen,et al.  The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena , 1999 .

[44]  Petros Drineas,et al.  FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .

[45]  G. Franceschetti,et al.  On the degrees of freedom of scattered fields , 1989 .

[46]  Eric F Darve,et al.  A fast multipole method for Maxwell equations stable at all frequencies , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[47]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[48]  Jian-Ming Jin,et al.  Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .

[49]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[50]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[51]  Zoran Andjelic,et al.  Fast integral equation solution for electric field shielding , 2005 .

[52]  Eric F Darve The Fast Multipole Method , 2000 .