Acquiring and Classifying Signals from Nanopores and Ion-Channels

The use of engineered nanopores as sensing elements for chemical and biological agents is a rapidly developing area. The distinct signatures of nanopore-nanoparticle lend themselves to statistical analysis. As a result, processing of signals from these sensors is attracting a lot of attention. In this paper we demonstrate a neural network approach to classify and interpret nanopore and ion-channel signals.

[1]  F J Sigworth,et al.  Applying hidden Markov models to the analysis of single ion channel activity. , 2002, Biophysical journal.

[2]  Andreas Spanias,et al.  Signal Processing for Silicon Ion-Channel Sensors , 2007 .

[3]  Charles R. Martin,et al.  Resistive-Pulse Sensing-From Microbes to Molecules. , 2000, Chemical reviews.

[4]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[5]  Joan Carletta,et al.  Wavelet transform-based methods for denoising of Coulter counter signals , 2008 .

[6]  Xiaofeng Lu,et al.  Simultaneous stochastic sensing of divalent metal ions , 2000, Nature Biotechnology.

[7]  F G Ball,et al.  The use of dwell time cross-correlation functions to study single-ion channel gating kinetics. , 1988, Biophysical journal.

[8]  Seong-Ho Shin,et al.  Single-molecule covalent chemistry with spatially separated reactants. , 2003, Angewandte Chemie.

[9]  Aleksei Aksimentiev,et al.  Stretching DNA using the electric field in a synthetic nanopore. , 2005, Nano letters.

[10]  C. P. Bean,et al.  Electrokinetic measurements with submicron particles and pores by the resistive pulse technique , 1977 .

[11]  Andreas Spanias,et al.  Classification of ion-channel signals using neural networks , 2009 .

[12]  Robert S. Eisenberg,et al.  Teflon-coated silicon apertures for supported lipid bilayer membranes , 2004 .

[13]  David G. Stork,et al.  Pattern Classification , 1973 .

[14]  F. Sigworth,et al.  Data transformations for improved display and fitting of single-channel dwell time histograms. , 1987, Biophysical journal.

[15]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[16]  Richard M Crooks,et al.  A carbon nanotube-based coulter nanoparticle counter. , 2004, Accounts of chemical research.

[17]  Charles R. Martin,et al.  Resistive-Pulse SensingFrom Microbes to Molecules , 2000 .

[18]  Andreas Spanias,et al.  Transform-domain features for ion-channel sensors , 2008 .

[19]  Urs Staufer,et al.  Sensing protein molecules using nanofabricated pores , 2006 .

[20]  K. Magleby,et al.  Sampling, log binning, fitting, and plotting durations of open and shut intervals from single channels and the effects of noise , 1987, Pflügers Archiv - European Journal of Physiology.

[21]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[22]  Christina Trautmann,et al.  An Asymmetric Polymer Nanopore for Single Molecule Detection , 2004 .

[23]  Sean Conlan,et al.  Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter , 1999, Nature.

[24]  F Sachs,et al.  Hidden Markov modeling for single channel kinetics with filtering and correlated noise. , 2000, Biophysical journal.

[25]  K. Schulten,et al.  Sizing DNA using a nanometer-diameter pore. , 2004, Biophysical journal.

[26]  Leo Petrossian Cylindrical solid state nanopores , 2007 .

[27]  Richard M Crooks,et al.  The resurgence of Coulter counting for analyzing nanoscale objects. , 2004, The Analyst.

[28]  Takashi Ito,et al.  A Carbon Nanotube-Based Coulter Nanoparticle Counter , 2005 .

[29]  Roman Kuc,et al.  Identification of hidden Markov models for ion channel currents. I. Colored background noise , 1998, IEEE Trans. Signal Process..

[30]  S. R. Olsen,et al.  An in situ rapid heat–quench cell for small-angle neutron scattering , 2008 .

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.