Representing Scope in Intuitionistic Deductions

Abstract Intuitionistic proofs can be segmented into scopes which describe when assumptions can be used. In standard descriptions of intuitionistic logic, these scopes occupy contiguous regions of proofs. This leads to an explosion in the search space for automated deduction, because of the difficulty of planning to apply a rule inside a particular scoped region of the proof. This paper investigates an alternative representation which assigns scope explicitly to formulas, and which is inspired in part by semantics-based translation methods for modal deduction. This calculus is simple and is justified by direct proof-theoretic arguments that transform proofs in the calculus so that scopes match standard descriptions. A Herbrand theorem, established straightforwardly, lifts this calculus to incorporate unification. The resulting system has no impermutabilities whatsoever — rules of inference may be used equivalently anywhere in the proof. Nevertheless, a natural specification describes how λ-terms are to be extracted from its deductions.

[1]  Dale Miller,et al.  A Logical Analysis of Modules in Logic Programming , 1989, J. Log. Program..

[2]  Peter B. Andrews Theorem Proving via General Matings , 1981, JACM.

[3]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[4]  A. S. Troelstra,et al.  Constructivism in Mathematics, Volume 2 , 1991 .

[5]  Wim Veldman An Intuitionistic Completeness Theorem for Intuitionistic Predicate Logic , 1976, J. Symb. Log..

[6]  Hugo Herbelin,et al.  A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.

[7]  Amy P. Felty A Logic Program for Transforming Sequent Proofs to Natural Deduction Proofs , 1989, ELP.

[8]  Patrice Enjalbert,et al.  Modal Theorem Proving: An Equational Viewpoint , 1989, IJCAI.

[9]  Christoph Kreitz,et al.  On Transforming Intuitionistic Matrix Proofs into Standard-Sequent Proofs , 1995, TABLEAUX.

[10]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[11]  Per Martin-Löf,et al.  Constructive mathematics and computer programming , 1984 .

[12]  Stephen Cole Kleene,et al.  Two papers on the predicate calculus , 1952 .

[13]  Hans Jürgen Ohlbach,et al.  Optimized Translation of Multi Modal Logic into Predicate Logic , 1993, LPAR.

[14]  Peter Jackson,et al.  A General Proof Method for First-Order Modal Logic , 1987, IJCAI.

[15]  Dale Miller,et al.  A multiple-conclusion meta-logic , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[16]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[17]  J. N. Crossley,et al.  Formal Systems and Recursive Functions , 1963 .

[18]  Matthew Stone,et al.  Efficient Constraints on Possible Worlds for Reasoning about Necessity , 1995 .

[19]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[20]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[21]  Lawrence J. Henschen,et al.  What Is Automated Theorem Proving? , 1985, J. Autom. Reason..

[22]  M. Fitting Intuitionistic logic, model theory and forcing , 1969 .

[23]  Christoph Kreitz,et al.  Converting Non-Classical Matrix Proofs into Sequent-Style Systems , 1996, CADE.

[24]  Natarajan Shankar,et al.  Proof Search in the Intuitionistic Sequent Calculus , 1992, CADE.

[25]  Jean Gallier,et al.  Constructive Logics Part I: A Tutorial on Proof Systems and Typed gamma-Calculi , 1993, Theor. Comput. Sci..

[26]  S BoyerRoger,et al.  Ttle sharing of structure in theorem proving programs , 1972 .

[27]  Guy Perrier,et al.  On Proof Normalization in Linear Logic , 1992, Theor. Comput. Sci..

[28]  A. Troelstra Constructivism in mathematics , 1988 .

[29]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[30]  Jean H. Gallier,et al.  Logic for Computer Science: Foundations of Automatic Theorem Proving , 1985 .

[31]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[32]  Patrice Enjalbert,et al.  Multimodal Logic Programming Using Equational and Order-Sorted Logic , 1992, Theor. Comput. Sci..

[33]  Raymond M. Smullyan,et al.  A Generalization of Intuitionistic and Modal Logics , 1973 .

[34]  Toby Walsh,et al.  Automated Deduction—CADE-11 , 1992, Lecture Notes in Computer Science.

[35]  Melvin Fitting,et al.  A Modal Herbrand Theorem , 1996, Fundam. Informaticae.

[36]  Natarajan Shankar,et al.  Proof search in first-order linear logic and other cut-free sequent calculi , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[37]  Patrick Suppes,et al.  Logic, Methodology and Philosophy of Science , 1963 .

[38]  Harold Schellinx,et al.  Some Syntactical Observations on Linear Logic , 1991, J. Log. Comput..

[39]  O. Bittel,et al.  A Tableau-Based Theorem Proving Method for Intuitionistic Logic , 2001 .

[40]  Hans Jürgen Ohlbach,et al.  Semantics-Based Translation Methods for Modal Logics , 1991, J. Log. Comput..

[41]  Oliver Bittel Tableau-Based Theorem Proving and Synthesis of Lambda-Terms in the Intuitionistic Logic , 1992, JELIA.

[42]  Marcello D'Agostino,et al.  The Taming of the Cut. Classical Refutations with Analytic Cut , 1994, J. Log. Comput..

[43]  Marcello D'Agostino,et al.  Are tableaux an improvement on truth-tables? , 1992, J. Log. Lang. Inf..

[44]  D. Prawitz Ideas and Results in Proof Theory , 1971 .

[45]  R. Smullyan First-Order Logic , 1968 .

[46]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[47]  Rance Cleaveland,et al.  Implementing mathematics with the Nuprl proof development system , 1986 .

[48]  Lincoln A. Wallen,et al.  Automated proof search in non-classical logics - efficient matrix proof methods for modal and intuitionistic logics , 1990, MIT Press series in artificial intelligence.

[49]  Andrei Voronkov Proof-Search in Intuitionistic Logic Based on Constraint Satisfaction , 1996, TABLEAUX.

[50]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[51]  Christoph Kreitz,et al.  T-String Unification: Unifying Prefixes in Non-classical Proof Methods , 1996, TABLEAUX.

[52]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[53]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..