Phase Constitution and Heat Treatment Behavior of Low Cost Ti-Mn System Alloys

This paper is a review of results for Ti-Mn [1], Ti-Mn-Al [2] and Ti-Mn-Fe [3] alloys that have been previously published. Titanium alloys, especially beta-type titanium alloys, have high specific strength, excellent corrosion resistance and good biocompatibility. Unfortunately, applications of titanium alloys are limited by their relatively higher cost. One reason is the use of rare and expensive metallic elements, such as vanadium and molybdenum, as a beta stabilizer. In order to reduce the cost, inexpensive and abundantly available metallic elements should be used as beta stabilizers. Manganese was adopted as a beta stabilizer because it is an abundant metallic element in the Earth’s crust and is relatively low in cost. The heat treatment behavior of Ti-Mn, Ti-Mn-Al and Ti-Mn-Fe alloys was investigated through electrical resistivity and Vickers hardness measurements, X-ray diffraction measurements to identify phase constitution, and observations using a light microscope [1], [2] and [3].