Condensation on slippery asymmetric bumps

[1]  D. Beysens,et al.  Edge effects on water droplet condensation. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  D. Beysens,et al.  Dew condensation on desert beetle skin , 2014, The European physical journal. E, Soft matter.

[3]  F T Malik,et al.  Nature's moisture harvesters: a comparative review , 2014, Bioinspiration & biomimetics.

[4]  Gareth H. McKinley,et al.  Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces , 2014, Scientific Reports.

[5]  Joanna Aizenberg,et al.  Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces with Hydrophilic Patches , 2013 .

[6]  H. Stone,et al.  Short and long time drop dynamics on lubricated substrates , 2013, 1309.6339.

[7]  Rebecca A. Belisle,et al.  Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers , 2013, Nature Communications.

[8]  Rebecca A. Belisle,et al.  Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures , 2013 .

[9]  Evelyn N. Wang,et al.  Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer , 2013, Scientific Reports.

[10]  Jolanta A Watson,et al.  Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate , 2013, Proceedings of the National Academy of Sciences.

[11]  Evelyn N Wang,et al.  Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. , 2012, Nano letters.

[12]  Sushant Anand,et al.  Enhanced condensation on lubricant-impregnated nanotextured surfaces. , 2012, ACS nano.

[13]  Joanna Aizenberg,et al.  Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. , 2012, ACS nano.

[14]  Lei Jiang,et al.  A multi-structural and multi-functional integrated fog collection system in cactus , 2012, Nature Communications.

[15]  Sindy K. Y. Tang,et al.  Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity , 2011, Nature.

[16]  N. Nuraje,et al.  Durable antifog films from layer-by-layer molecularly blended hydrophilic polysaccharides. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[17]  Marie Dacke,et al.  Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles , 2010, Frontiers in Zoology.

[18]  Jin Zhai,et al.  Directional water collection on wetted spider silk , 2010, Nature.

[19]  J. Boreyko,et al.  Self-propelled dropwise condensate on superhydrophobic surfaces. , 2009, Physical review letters.

[20]  Kripa K. Varanasi,et al.  Spatial control in the heterogeneous nucleation of water , 2009 .

[21]  Bharat Bhushan,et al.  Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering , 2009 .

[22]  M. Qian,et al.  Heterogeneous nucleation on convex spherical substrate surfaces: A rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived. , 2009, The Journal of chemical physics.

[23]  M. Muselli,et al.  Study of dew water collection in humid tropical islands , 2008 .

[24]  J. Murton,et al.  Frost weathering: recent advances and future directions , 2008 .

[25]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[26]  Marcus L. Roper,et al.  Imbibition by polygonal spreading on microdecorated surfaces. , 2007, Nature materials.

[27]  D. Beysens Dew nucleation and growth , 2006 .

[28]  Lei Zhai,et al.  Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. , 2006, Nano letters.

[29]  Walter Federle,et al.  Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Beysens,et al.  Nucleation and growth on a superhydrophobic grooved surface. , 2004, Physical review letters.

[31]  Shu Yang,et al.  From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[32]  J. Rose Dropwise condensation theory and experiment: A review , 2002 .

[33]  A. Parker,et al.  Water capture by a desert beetle , 2001, Nature.

[34]  J. C. Chen,et al.  Fast drop movements resulting from the phase change on a gradient surface. , 2001, Science.

[35]  George M. Whitesides,et al.  Controlling local disorder in self-assembled monolayers by patterning the topography of their metallic supports , 1998, Nature.

[36]  George M. Whitesides,et al.  Patterned self-assembled monolayers formed by microcontact printing direct selective metalization by chemical vapor deposition on planar and nonplanar substrates , 1995 .

[37]  C. Knobler,et al.  Scaling description for the growth of condensation patterns on surfaces. , 1988, Physical review. A, General physics.

[38]  L. R. Koenig,et al.  Numerical Modeling of Ice Deposition , 1971 .

[39]  Kripa K Varanasi,et al.  Stable Dropwise Condensation for Enhancing Heat Transfer via the Initiated Chemical Vapor Deposition (iCVD) of Grafted Polymer Films , 2014, Advanced materials.

[40]  Karl H. Wolf,et al.  Comparative review , 2011, J. Documentation.

[41]  Luis Pérez-Lombard,et al.  A review on buildings energy consumption information , 2008 .

[42]  David Qu,et al.  Wetting and Roughness , 2008 .

[43]  Pavan Reddy,et al.  Recent Advances and Future Directions , 2004 .

[44]  Robert C. Wolpert,et al.  A Review of the , 1985 .