$L^p$-Wasserstein distance for stochastic differential equations driven by L\'{e}vy processes

Coupling by reflection mixed with synchronous coupling is constructed for a class of stochastic differential equations (SDEs) driven by L\'{e}vy noises. As an application, we establish the exponential contractivity of the associated semigroups $(P_t)_{t\ge0}$ with respect to the standard $L^p$-Wasserstein distance for all $p\in[1,\infty)$. In particular, consider the following SDE: \[\mathrm{d}X_t=\mathrm{d}Z_t+b(X_t)\,\mathrm{d}t,\] where $(Z_t)_{t\ge0}$ is a symmetric $\alpha$-stable process on $\mathbb{R}^d$ with $\alpha\in(1,2)$. We show that if the drift term $b$ satisfies that for any $x,y\in\mathbb{R}^d$, \[\bigl\langle b(x)-b(y),x-y\bigr\rangle\le\cases{K_1|x-y|^2,\qquad |x-y|\le L_0;\cr -K_2|x-y|^{\theta},\qquad |x-y|>L_0}\] holds with some positive constants $K_1$, $K_2$, $L_0>0$ and $\theta\ge2$, then there is a constant $\lambda:=\lambda(\theta,K_1,K_2,L_0)>0$ such that for all $p\in[1,\infty)$, $t>0$ and $x,y\in\mathbb{R}^d$, \[W_p(\delta_xP_t,\delta_yP_t)\le C(p,\theta,K_1,K_2,L_0)\mathrm{e}^{-\lambda t/p}\biggl[\frac{|x-y|^{1/p}\vee|x-y|}{1+|x-y|{\mathbf{1}}_{(1,\infty )\times (2,\infty)}(t,\theta)}\biggr].\]

[1]  Daniel W. Stroock,et al.  Diffusion processes associated with Lévy generators , 1975 .

[2]  B. Marchal,et al.  Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel , 1976 .

[3]  L. Rogers,et al.  Coupling of Multidimensional Diffusions by Reflection , 1986 .

[4]  Mu-Fa Chen,et al.  Coupling Methods for Multidimensional Diffusion Processes , 1989 .

[5]  Mu-Fa Chen,et al.  From Markov Chains to Non-Equilibrium Particle Systems , 1992 .

[6]  Mu-Fa Chen Eigenvalues, inequalities and ergodic theory , 2000 .

[7]  Karl-Theodor Sturm,et al.  Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .

[8]  Feng-Yu Wang Functional inequalities, Markov semigroups and spectral theory = 泛函不等式,马尓可夫半群与谱理论 , 2005 .

[9]  Feng-Yu Wang,et al.  Gradient estimates for diffusion semigroups with singular coefficients , 2006 .

[10]  T. Jakubowski,et al.  Estimates of Heat Kernel of Fractional Laplacian Perturbed by Gradient Operators , 2007 .

[11]  R. Schilling,et al.  Coupling property and gradient estimates of L\'{e}vy processes via the symbol , 2010, 1011.1067.

[12]  R. Schilling,et al.  Constructions of coupling processes for Lévy processes , 2010, 1009.5511.

[13]  A. Eberle Reflection coupling and Wasserstein contractivity without convexity , 2011 .

[14]  On the coupling property and the Liouville theorem for Ornstein–Uhlenbeck processes , 2011, 1104.2166.

[15]  Thomas G. Kurtz,et al.  Equivalence of Stochastic Equations and Martingale Problems , 2011 .

[16]  R. Schilling,et al.  On the coupling property of Lévy processes , 2010, 1006.5288.

[17]  Coupling for Ornstein–Uhlenbeck processes with jumps , 2010, 1002.2890.

[18]  Arnaud Guillin,et al.  Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations , 2011 .

[19]  Feng-Yu Wang,et al.  Harnack inequalities for stochastic equations driven by Levy noise , 2012, 1212.0405.

[20]  Zhen-Qing Chen,et al.  Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation , 2010, 1011.3273.

[21]  G. Pap,et al.  Yamada-Watanabe Results for Stochastic Differential Equations with Jumps , 2013, 1312.4485.

[22]  Jian Wang,et al.  Exponential Contractivity in the $L^p$-Wasserstein Distance for Diffusion Processes , 2014 .

[23]  Jian Wang,et al.  L-Wasserstein Distance for Diffusion Processes , 2014 .

[24]  P. Cattiaux,et al.  Semi Log-Concave Markov Diffusions , 2013, 1303.6884.

[25]  On the Existence and Explicit Estimates for the Coupling Property of Lévy Processes with Drift , 2014 .

[26]  A. Eberle Couplings, distances and contractivity for diffusion processes revisited , 2013 .