Langmuir–Blodgett self organized nanocrystalline tungsten oxide thin films for electrochromic performance

We explore a novel method to synthesize pebble-like nanocrystalline WO3 thin films for the first time by thermal decomposition of a multilayer Langmuir–Blodgett film of an octadecylamine–tungsten complex. The resulting film was thoroughly characterized by various characterization techniques. The electrochromic performance was evaluated in Li+ as a charge-balancing ion. The WO3 thin film displays a state-of-the-art performance with respect to optical modulation of 25.94% at λ630 nm with a very rapid coloration and bleaching time of 3.57 s and 3.14 s, respectively and a high coloration efficiency of 71.26 cm2 C−1. The excellent electrochromic performance can be attributed to the high size uniformity of WO3 nanoparticles, whose crystalline nature offer more active sites for Li+ diffusion and control the diffusion path length. Thus, the Langmuir–Blodgett WO3 film contributes to high energy conversion devices.

[1]  K. V. Khot,et al.  High performing smart electrochromic device based on honeycomb nanostructured h-WO3 thin films: hydrothermal assisted synthesis. , 2015, Dalton transactions.

[2]  S. Mali,et al.  Hybrid Physicochemical Synthesis and Electrochromic Performance of WO3/MoO3Thin Films , 2014 .

[3]  S. Mali,et al.  Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application , 2014 .

[4]  Y. Her,et al.  Facile synthesis of one-dimensional crystalline/amorphous tungsten oxide core/shell heterostructures with balanced electrochromic properties , 2014 .

[5]  J. S. Chen,et al.  Correlation between electrochromism and electronic structures of tungsten oxide films , 2014 .

[6]  Xiaoheng Liu,et al.  Synthesis, characterization and enhanced gas sensing performance of WO3 nanotube bundles , 2013 .

[7]  C. Betty,et al.  A heterostructured SnO2–TiO2 thin film prepared by Langmuir–Blodgett technique , 2013 .

[8]  D. Jan,et al.  Bond and electrochromic properties of WO3 films deposited with horizontal DC, pulsed DC, and RF sputtering , 2013 .

[9]  D. K. Aswal,et al.  A new route for the fabrication of an ultrathin film of a PdO-TiO2 composite photocatalyst. , 2012, Dalton transactions.

[10]  P. Panissod,et al.  Size dependent dipolar interactions in iron oxide nanoparticle monolayer and multilayer Langmuir–Blodgett films , 2012 .

[11]  X. W. Sun,et al.  Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device , 2012 .

[12]  Erwin M. Sabio,et al.  Single-Crystal Tungsten Oxide Nanosheets: Photochemical Water Oxidation in the Quantum Confinement Regime , 2012 .

[13]  Xiao Wei Sun,et al.  Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance. , 2012, Chemical communications.

[14]  Jing Sun,et al.  Effects of morphologies on acetone-sensing properties of tungsten trioxide nanocrystals , 2011 .

[15]  S. Cho,et al.  Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting† , 2011 .

[16]  Xiao Wei Sun,et al.  Hydrothermally grown nanostructured WO3 films and their electrochromic characteristics , 2010 .

[17]  Z. Fu,et al.  Nanostructured WO3 thin film as a new anode material for lithium-ion batteries , 2010 .

[18]  Yung-Eun Sung,et al.  Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method , 2009 .

[19]  Masahiro Miyauchi,et al.  Site‐Selective Deposition of Metal Nanoparticles on Aligned WO3 Nanotrees for Super‐Hydrophilic Thin Films , 2009 .

[20]  Andrea R Tao,et al.  Langmuir-Blodgettry of nanocrystals and nanowires. , 2008, Accounts of chemical research.

[21]  Kazuki Yoshimura,et al.  Flexible all-solid-state switchable mirror on plastic sheet , 2008 .

[22]  T. Brezesinski,et al.  Electrochromic Stability of WO3 Thin Films with Nanometer-Scale Periodicity and Varying Degrees of Crystallinity , 2007 .

[23]  Aryasomayajula Subrahmanyam,et al.  Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films , 2007 .

[24]  N. Naseri,et al.  Hydrophilicity variation of WO3 thin films with annealing temperature , 2007 .

[25]  Bobby To,et al.  Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications , 2006 .

[26]  K. Poeppelmeier,et al.  Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties , 2006 .

[27]  Claes-Göran Granqvist,et al.  Out of a niche , 2006, Nature materials.

[28]  S. A. Agnihotry,et al.  Effect of oxalic acid dihydrate on optical and electrochemical properties of sol–gel derived amorphous electrochromic WO3 films , 2005 .

[29]  Hongjun Gao,et al.  Strong photoluminescence of nanostructured crystalline tungsten oxide thin films , 2005 .

[30]  Satyen K. Deb,et al.  Influence of microstructure on the chemical diffusion of lithium ions in amorphous lithiated tungsten oxide films , 2001 .

[31]  Michael Grätzel,et al.  Nanocrystalline electrochromic displays , 1999 .

[32]  Hongzhi Wang,et al.  Morphology-tailored synthesis of vertically aligned 1D WO3 nano-structure films for highly enhanced electrochromic performance , 2013 .

[33]  Jin Zhai,et al.  Electrochromic films with a stacked structure of WO3 nanosheets , 2013 .

[34]  John R. Reynolds,et al.  Electrochromic organic and polymeric materials for display applications , 2006, Displays.

[35]  David R. Rosseinsky,et al.  Electrochromism : fundamentals and applications , 1995 .