On the Fourier Representation of Computable Continuous Signals

In this paper we study whether it is possible to decide algorithmically if the Fourier series of a continuous function converges uniformly. We show that this decision cannot be made algorithmically, because there exists no Turing machine that can decide for each and every continuous functions whether its Fourier series converges uniformly. Turing computability describes the theoretical feasible that can be implemented on a digital computer, hence the result shows that there exists no algorithm that can perform this decision.

[1]  Holger Boche,et al.  Sampling of Deterministic Signals and Systems , 2011, IEEE Transactions on Signal Processing.

[2]  A. Turing,et al.  On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction , 1938 .

[3]  Holger Boche,et al.  Non-Existence of Convolution Sum System Representations , 2019, IEEE Transactions on Signal Processing.

[4]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[5]  Soo-Chang Pei,et al.  Fractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform , 1999, IEEE Trans. Signal Process..

[6]  Steven W. Zucker,et al.  Greedy Basis Pursuit , 2007, IEEE Transactions on Signal Processing.

[7]  Holger Boche,et al.  Divergence Behavior of Sequences of Linear Operators with Applications , 2019 .

[8]  M. B. Pour-El,et al.  COMPUTABILITY AND NONCOMPUTABILITY IN CLASSICAL ANALYSIS , 1983 .

[9]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[10]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[11]  T. Rado On non-computable functions , 1962 .

[12]  Ernst Specker,et al.  Nicht konstruktiv beweisbare Sätze der Analysis , 1949, Journal of Symbolic Logic.

[13]  Holger Boche,et al.  Spaceability and strong divergence of the Shannon sampling series and applications , 2017, J. Approx. Theory.

[14]  H. Boche,et al.  Strong Divergence of Reconstruction Procedures for the Paley-Wiener Space PW1π and the Hardy Space H1 and the Hardy H 1 , 2014 .

[15]  Philippe Moser,et al.  On the convergence of Fourier series of computable Lebesgue integrable functions , 2008, Math. Log. Q..

[16]  Deepen Sinha,et al.  On the optimal choice of a wavelet for signal representation , 1992, IEEE Trans. Inf. Theory.

[17]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[19]  Hervé Carfantan,et al.  Time-invariant orthonormal wavelet representations , 1996, IEEE Trans. Signal Process..

[20]  R. Soare Recursively enumerable sets and degrees , 1987 .

[21]  George Boolos,et al.  Computability and logic , 1974 .

[22]  Holger Boche,et al.  Distributional Behavior of Convolution Sum System Representations , 2018, IEEE Transactions on Signal Processing.

[23]  Holger Boche,et al.  There Exists No Globally Uniformly Convergent Reconstruction for the Paley–Wiener Space ${{\cal PW}}_{\pi}^{1}$ of Bandlimited Functions Sampled at Nyquist Rate , 2008, IEEE Transactions on Signal Processing.

[24]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[25]  Y. Katznelson An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .

[26]  Lawrence R. Rabiner,et al.  Techniques for Designing Finite-Duration Impulse-Response Digital Filters , 1971 .

[27]  Gaofeng Wang,et al.  Solution of inverse problems in image processing by wavelet expansion , 1995, IEEE Trans. Image Process..

[28]  Jeremy Avigad,et al.  Computability and analysis: the legacy of Alan Turing , 2012, Turing's Legacy.

[29]  Peter N. Heller,et al.  Theory of regular M-band wavelet bases , 1993, IEEE Trans. Signal Process..

[30]  Gerhard Schmeisser,et al.  Sinc Approximation with a Gaussian Multiplier , 2007 .

[31]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.