Spectrum of the transfer matrices of the spin chains associated with the $A^{(2)}_3$ Lie algebra

We study the exact solution of quantum integrable system associated with the A (2) 3 twist Lie algebra, where the boundary reflection matrices have non-diagonal elements thus the U(1) symmetry is broken. With the help of the fusion technique, we obtain the closed recursive relations of the fused transfer matrices. Based on them, together with the asymptotic behaviors and the values at special points, we obtain the eigenvalues and Bethe ansatz equations of the system. We also show that the method is universal and valid for the periodic boundary condition where the U(1) symmetry is reserved. The results in this paper can be applied to studying the exact solution of the A (2) n -related integrable models with arbitrary n. PACS: 75.10.Pq, 02.30.Ik, 71.10.Pm

[1]  M. Karowski On the Bound State Problem in (1+1)-dimensional Field Theories , 1979 .

[2]  Wen-Li Yang,et al.  Nested off-diagonal Bethe ansatz and exact solutions of the su(n) spin chain with generic integrable boundaries , 2013, 1312.4770.

[3]  Wen-Li Yang,et al.  Off-Diagonal Bethe Ansatz for Exactly Solvable Models , 2015 .

[4]  E. Sklyanin Boundary conditions for integrable quantum systems , 1988 .

[5]  Wen-Li Yang,et al.  Exact solution of the Izergin-Korepin model with general non-diagonal boundary terms , 2014, 1403.7915.

[6]  神保 道夫 Quantum R matrix for the generalized Toda system , 1986 .

[7]  N. Reshetikhin,et al.  Exact solution of the Heisenberg XXZ model of spin s , 1986 .

[8]  T. Wirth,et al.  Separation of variables in the open XXX chain , 2008, 0803.1776.

[9]  G. Niccoli Non-diagonal open spin-1/2 XXZ quantum chains by separation of variables: complete spectrum and matrix elements of some quasi-local operators , 2012, 1206.0646.

[10]  P. Baseilhac,et al.  Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory , 2007, hep-th/0703106.

[11]  L. A. Takhtadzhan,et al.  THE QUANTUM METHOD OF THE INVERSE PROBLEM AND THE HEISENBERG XYZ MODEL , 1979 .

[12]  T. Wirth,et al.  Functional Bethe ansatz methods for the open XXX chain , 2010, 1009.1081.

[13]  Rafael I. Nepomechie,et al.  Towards the solution of an integrable D2(2) spin chain , 2019, Journal of Physics A: Mathematical and Theoretical.

[14]  N. Reshetikhin,et al.  Quantum linear problem for the sine-Gordon equation and higher representations , 1983 .

[15]  S. Belliard Modified algebraic Bethe ansatz for XXZ chain on the segment - I: Triangular cases , 2014, 1408.4840.

[16]  N. Reshetikhin,et al.  Yang-Baxter equation and representation theory: I , 1981 .

[17]  Rafael I. Nepomechie,et al.  New D ( 2 ) n + 1 K-matrices with quantum group symmetry , 2018 .

[18]  Rafael I. Nepomechie,et al.  The integrable quantum group invariant A ( 2 ) 2 n − 1 and D ( 2 ) n + 1 open spin chains , 2018 .

[19]  P. Baseilhac,et al.  Generalized q-Onsager Algebras and Boundary Affine Toda Field Theories , 2009, 0906.1215.

[20]  N. Reshetikhin A method of functional equations in the theory of exactly solvable quantum systems , 1983 .

[21]  Wen-Li Yang,et al.  Off-diagonal Bethe ansatz and exact solution of a topological spin ring. , 2013, Physical review letters.

[22]  Rafael I. Nepomechie,et al.  Analytical Bethe Ansatz for quantum algebra invariant spin chains , 1991, hep-th/9110050.

[23]  N. Grosjean,et al.  Modified algebraic Bethe ansatz for XXZ chain on the segment - III - Proof , 2015, 1506.02147.

[24]  M. J. Martins,et al.  Integrability of the D2n vertex models with open boundary , 2000, nlin/0002050.

[25]  P. Baseilhac,et al.  The half-infinite XXZ chain in Onsagerʼs approach , 2012, 1211.6304.

[26]  S. Belliard,et al.  Modified algebraic Bethe ansatz for XXZ chain on the segment – II – general cases , 2014, 1412.7511.

[27]  S. Belliard,et al.  Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz , 2013, 1309.6165.

[28]  N. Reshetikhin,et al.  Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum , 1987 .

[29]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[30]  P. Baseilhac The q-deformed analogue of the Onsager algebra: Beyond the Bethe ansatz approach , 2006, math-ph/0604036.

[31]  N. Reshetikhin The spectrum of the transfer matrices connected with Kac-Moody algebras , 1987 .

[32]  M. Gaudin,et al.  The Bethe Wavefunction , 2014 .

[33]  V. Korepin,et al.  The inverse scattering method approach to the quantum Shabat-Mikhailov model , 1981 .