Development of hyperspectral imaging as a bio-optical taxonomic tool for pigmented marine organisms

Reflection spectra obtained from hyperspectral imaging can be used as a bio-optical taxonomic identification tool if the pigment composition and the corresponding optical absorption signatures of an organism are known. In this study we elucidate species-specific absorption and corresponding reflection signatures of marine organisms and discuss optical fingerprints from underwater hyperspectral imaging (UHI) for future automated identification of organisms on the seafloor. When mounted on underwater robots, UHI has the potential to be a time- and cost-efficient identification and mapping method covering large areas over a short time. Hyperspectral imaging in vivo and in situ were used to obtain species-specific reflection signatures (optical fingerprints). High performance liquid chromatography, liquid chromatography–mass spectroscopy and nuclear magnetic resonance were used for pigment identification and to obtain species-specific absorption signatures of four marine benthic species; the spoonworm Bonellia viridis, and the sponges Isodictya palmata, Hymedesmia paupertas and Hymedesima sp. Species-specific optical fingerprints based on a UHI-based reflectance signature were verified successfully in the organisms investigated.

[1]  F. Singleton,et al.  A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. , 1988, Experientia.

[2]  G. Johnsen,et al.  Pigmentation and Spectral Absorbance Signatures in Deep-Water Corals from the Trondheimsfjord, Norway , 2012, Marine drugs.

[3]  H. Lee,et al.  Microbial Symbiosis in Marine Sponges , 2001 .

[4]  B. Baker,et al.  Purine and nucleoside metabolites from the Antarctic sponge Isodictya erinacea. , 1998, Journal of natural products.

[5]  Mark A. Moline,et al.  Phytoplankton Pigments: Optical monitoring of phytoplankton bloom pigment signatures , 2011 .

[6]  Wickramasinghe M Bandaranayake,et al.  The nature and role of pigments of marine invertebrates. , 2006, Natural product reports.

[7]  J. Berge,et al.  Phytoplankton chemotaxonomy in waters around the Svalbard archipelago reveals high amounts of Chl b and presence of gyroxanthin-diester , 2011, Polar Biology.

[8]  F. Šorm,et al.  Über terpene LIV. Über die struktur des lactarazulens und des lactaroviolins , 1954 .

[9]  J. Garrido,et al.  Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases , 2000 .

[10]  Martin Ludvigsen,et al.  Scientific operations combining ROV and AUV in the Trondheim Fjord , 2013, 2013 MTS/IEEE OCEANS - Bergen.

[11]  H. Kawakami,et al.  Calicogorgins A, B, and C, three bioactive sphinganine derivatives from the gorgonian Calicogorgia sp. , 1992 .

[12]  F. Singleton,et al.  A marineMicrococcus produces metabolites ascribed to the spongeTedania ignis , 1988, Experientia.

[13]  Wojciech M. Klonowski,et al.  Retrieving key benthic cover types and bathymetry from hyperspectral imagery , 2007 .

[14]  M. N. Giudici Defence mechanism of Bonellia viridis , 1984 .

[15]  P. Schembri,et al.  The structure and physiological activity of bonellin - a unique chlorin derived from Bonellia viridis , 1979 .

[16]  Zsolt Volent,et al.  Kelp forest mapping by use of airborne hyperspectral imager , 2007 .

[17]  G. Prota,et al.  Neobonellin, a new biologically active pigment fromBonellia viridis , 1978, Experientia.

[18]  N. Jiao,et al.  Diversity and distribution of pigmented heterotrophic bacteria in marine environments. , 2006, FEMS microbiology ecology.

[19]  Asgeir J. Sørensen,et al.  Development of dynamic positioning and tracking system for the ROV Minerva , 2012 .

[20]  Sutton,et al.  Further Advances in Unmanned Marine Vehicles , 2012 .

[21]  C. Wilkinson SIGNIFICANCE OF MICROBIAL SYMBIONTS IN SPONGE EVOLUTION AND ECOLOGY , 1987 .

[22]  K. Heia,et al.  Multipurpose spectral imager. , 2000, Applied optics.

[23]  Geir Johnsen,et al.  Microscopic hyperspectral imaging used as a bio-optical taxonomic tool for micro- and macroalgae. , 2009, Applied optics.

[24]  Subsea optics and imaging , 2013 .

[25]  B. Vanhoorne,et al.  World Register of Marine Species , 2013 .

[26]  M. Moline,et al.  Remote Environmental Monitoring Units: An Autonomous Vehicle for Characterizing Coastal Environments* , 2005 .