A microbial sulfoquinovose monooxygenase pathway enables sulfosugar assimilation

Breakdown of the sulfosugar sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose), produced by photosynthetic organisms, is an important component of the biogeochemical carbon and sulfur cycles. Here, we reveal a new pathway for SQ degradation involving oxidative desulfurization to release sulfite and complete breakdown of the carbon skeleton of this sugar to support the growth of the plant pathogen Agrobacterium tumefaciens. SQ or its glycoside sulfoquinovosyl glycerol are imported by an ABC transporter system with associated SQ binding protein. A sulfoquinovosidase cleaves the SQ glycoside and a flavin mononucleotide-dependent sulfoquinovose monooxygenase acts in concert with an NADH-dependent flavin reductase to release sulfite and form 6-oxo-glucose. A short-chain dehydrogenase/reductase oxidoreductase reduces 6-oxo-glucose to glucose, allowing it to enter primary metabolism. Structural and biochemical studies provide detailed insights into the binding and recognition of key species along the reaction coordinate. This sulfoquinovose monooxygenase pathway is distributed across alphaproteobacteria and especially within the rhizobiales. This metabolic strategy...

[1]  D. Dowling,et al.  Structures of the alkanesulfonate monooxygenase MsuD provide insight into C–S bond cleavage, substrate scope, and an unexpected role for the tetramer , 2021, The Journal of biological chemistry.

[2]  Cameron L.M. Gilchrist,et al.  clinker & clustermap.js: Automatic generation of gene cluster comparison figures , 2020, bioRxiv.

[3]  Huimin Zhao,et al.  A transaldolase-dependent sulfoglycolysis pathway in Bacillus megaterium DSM 1804. , 2020, Biochemical and biophysical research communications.

[4]  Spencer J. Williams,et al.  The Molecular Basis of Sulfosugar Selectivity in Sulfoglycolysis , 2020 .

[5]  O. Acevedo,et al.  Substrate-Dependent Mobile Loop Conformational Changes in Alkanesulfonate Monooxygenase from Accelerated Molecular Dynamics. , 2020, Biochemistry.

[6]  Alexander Loy,et al.  Environmental and Intestinal Phylum Firmicutes Bacteria Metabolize the Plant Sugar Sulfoquinovose via a 6-Deoxy-6-sulfofructose Transaldolase Pathway , 2020, iScience.

[7]  Nichollas E. Scott,et al.  A Sulfoglycolytic Entner-Doudoroff Pathway in Rhizobium leguminosarum bv. trifolii SRDI565 , 2019, Applied and Environmental Microbiology.

[8]  Spencer J. Williams,et al.  Dynamic Structural Changes Accompany the Production of Dihydroxypropanesulfonate by Sulfolactaldehyde Reductase , 2019, ACS Catalysis.

[9]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v4: recent updates and new developments , 2019, Nucleic Acids Res..

[10]  Spencer J. Williams,et al.  Comprehensive Synthesis of Substrates, Intermediates, and Products of the Sulfoglycolytic Embden-Meyerhoff-Parnas Pathway. , 2019, The Journal of organic chemistry.

[11]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[12]  P. Agarwal,et al.  Differential Substrate Recognition by Maltose Binding Proteins Influenced by Structure and Dynamics. , 2018, Biochemistry.

[13]  Michael J. Dagley,et al.  DExSI: a new tool for the rapid quantitation of 13C-labelled metabolites detected by GC-MS , 2018, Bioinform..

[14]  Spencer J. Williams,et al.  Sulfoquinovose in the biosphere: occurrence, metabolism and functions. , 2017, The Biochemical journal.

[15]  Saulius Gražulis,et al.  AceDRG: a stereochemical description generator for ligands , 2017, Acta crystallographica. Section D, Structural biology.

[16]  Juan Antonio Vizcaíno,et al.  The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition , 2016, Nucleic Acids Res..

[17]  Spencer J. Williams,et al.  YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids. , 2016, Nature chemical biology.

[18]  D. Spiteller,et al.  Entner–Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1 , 2015, Proceedings of the National Academy of Sciences.

[19]  T. Penning,et al.  The aldo-keto reductases (AKRs): Overview. , 2015, Chemico-biological interactions.

[20]  Matthias Mann,et al.  Visualization of LC‐MS/MS proteomics data in MaxQuant , 2015, Proteomics.

[21]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[22]  Michael Weiss,et al.  Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle , 2014, Nature.

[23]  Pelin Yilmaz,et al.  The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks , 2013, Nucleic Acids Res..

[24]  M. Udvardi,et al.  Transport and metabolism in legume-rhizobia symbioses. , 2013, Annual review of plant biology.

[25]  R. Breitling,et al.  Detecting Sequence Homology at the Gene Cluster Level with MultiGeneBlast , 2013, Molecular biology and evolution.

[26]  M. Sagi,et al.  The determination of sulfite levels and its oxidation in plant leaves. , 2012, Plant science : an international journal of experimental plant biology.

[27]  Thomas Huhn,et al.  Sulfoquinovose degraded by pure cultures of bacteria with release of C3-organosulfonates: complete degradation in two-member communities. , 2012, FEMS microbiology letters.

[28]  S. McNicholas,et al.  Presenting your structures: the CCP4mg molecular-graphics software , 2011, Acta crystallographica. Section D, Biological crystallography.

[29]  Gregory Stephanopoulos,et al.  Measuring deuterium enrichment of glucose hydrogen atoms by gas chromatography/mass spectrometry. , 2011, Analytical chemistry.

[30]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[31]  Graeme Winter,et al.  xia2: an expert system for macromolecular crystallography data reduction , 2010 .

[32]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[33]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[34]  A. Wilkinson,et al.  Higher-throughput approaches to crystallization and crystal structure determination. , 2008, Biochemical Society transactions.

[35]  Jue Chen,et al.  Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems , 2008, Microbiology and Molecular Biology Reviews.

[36]  Z. Rao,et al.  Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. , 2008, Journal of molecular biology.

[37]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .

[38]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[39]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Rotation Functions Biological Crystallography Likelihood-enhanced Fast Rotation Functions , 2003 .

[40]  M. Hewlins,et al.  Glycolytic Breakdown of Sulfoquinovose in Bacteria: a Missing Link in the Sulfur Cycle , 2003, Applied and Environmental Microbiology.

[41]  T. Richmond,et al.  Crystal structure of Escherichia coli alkanesulfonate monooxygenase SsuD. , 2002, Journal of molecular biology.

[42]  서정헌,et al.  반도체 공정 overview , 2001 .

[43]  M. Kertesz Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria. , 2000, FEMS microbiology reviews.

[44]  T. Leisinger,et al.  The Escherichia coli ssuEADCB Gene Cluster Is Required for the Utilization of Sulfur from Aliphatic Sulfonates and Is Regulated by the Transcriptional Activator Cbl* , 1999, The Journal of Biological Chemistry.

[45]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[46]  廷冕 李,et al.  応用 (Application) について , 1981 .

[47]  J. Harwood,et al.  The plant sulpholipid-- a major component of the sulphur cycle. , 1979, Biochemical Society transactions.

[48]  M. Mann,et al.  Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips , 2007, Nature Protocols.

[49]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[50]  B. Sörbo Sulfate: turbidimetric and nephelometric methods. , 1987, Methods in enzymology.