Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation

[1]  Paul K. Brindle,et al.  Is histone acetylation the most important physiological function for CBP and p300? , 2012, Aging.

[2]  A. Gingras,et al.  Histone Recognition and Large-Scale Structural Analysis of the Human Bromodomain Family , 2012, Cell.

[3]  Ming-Ming Zhou,et al.  The PHD finger: a versatile epigenome reader. , 2011, Trends in biochemical sciences.

[4]  Thomas A. Milne,et al.  Recognition of a Mononucleosomal Histone Modification Pattern by BPTF via Multivalent Interactions , 2011, Cell.

[5]  Raul Rabadan,et al.  Inactivating mutations of acetyltransferase genes in B-cell lymphoma , 2010, Nature.

[6]  D. Patel,et al.  TRIM24 links a noncanonical histone signature to breast cancer , 2010, Nature.

[7]  S. Trowitzsch,et al.  New baculovirus expression tools for recombinant protein complex production. , 2010, Journal of structural biology.

[8]  Jeroen Krijgsveld,et al.  Cooperative binding of two acetylation marks on a histone tail by a single bromodomain , 2009, Nature.

[9]  S. Grossman,et al.  CBP and p300 are cytoplasmic E4 polyubiquitin ligases for p53 , 2009, Proceedings of the National Academy of Sciences.

[10]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[11]  M. Washburn,et al.  The SIRT2 deacetylase regulates autoacetylation of p300. , 2008, Molecular cell.

[12]  Ming-Ming Zhou,et al.  Structural basis of site-specific histone recognition by the bromodomains of human coactivators PCAF and CBP/p300. , 2008, Structure.

[13]  Ling Wang,et al.  The structural basis of protein acetylation by the p300/CBP transcriptional coactivator , 2008, Nature.

[14]  Dinshaw J. Patel,et al.  Multivalent engagement of chromatin modifications by linked binding modules , 2007, Nature Reviews Molecular Cell Biology.

[15]  Tom Maniatis,et al.  Interferon Regulatory Factor 3 Is Regulated by a Dual Phosphorylation-dependent Switch*♦ , 2007, Journal of Biological Chemistry.

[16]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[17]  N. Kelleher,et al.  Kinetic and Mass Spectrometric Analysis of p300 Histone Acetyltransferase Domain Autoacetylation* , 2006, Journal of Biological Chemistry.

[18]  E. Kalkhoven,et al.  CBP and p300: HATs for different occasions. , 2004, Biochemical pharmacology.

[19]  T. Gibson,et al.  Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactor p300. , 2004, Journal of molecular biology.

[20]  R. Roeder,et al.  Regulation of the p300 HAT domain via a novel activation loop , 2004, Nature Structural &Molecular Biology.

[21]  Roberto Sanchez,et al.  Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. , 2004, Molecular cell.

[22]  D. Livingston,et al.  Polyubiquitination of p53 by a Ubiquitin Ligase Activity of p300 , 2003, Science.

[23]  R. Hennekam,et al.  Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. , 2003, Human molecular genetics.

[24]  M. Ikeda,et al.  Growth suppression of human carcinoma cells by reintroduction of the p300 coactivator , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  E. Kalkhoven,et al.  The PHD Type Zinc Finger Is an Integral Part of the CBP Acetyltransferase Domain , 2002, Molecular and Cellular Biology.

[26]  L. Bordoli,et al.  Functional analysis of the p300 acetyltransferase domain: the PHD finger of p300 but not of CBP is dispensable for enzymatic activity. , 2001, Nucleic acids research.

[27]  Dimitris Thanos,et al.  Nucleosome Sliding via TBP DNA Binding In Vivo , 2001, Cell.

[28]  J. T. Kadonaga,et al.  p300 Forms a Stable, Template-Committed Complex with Chromatin: Role for the Bromodomain , 2001, Molecular and Cellular Biology.

[29]  R. Goodman,et al.  CBP/p300 in cell growth, transformation, and development. , 2000, Genes & development.

[30]  Carlos Caldas,et al.  Mutations truncating the EP300 acetylase in human cancers , 2000, Nature Genetics.

[31]  R. Roeder,et al.  HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. , 2000, Molecular cell.

[32]  S. Tsuzuki,et al.  c-Myb acetylation at the carboxyl-terminal conserved domain by transcriptional co-activator p300 , 2000, Oncogene.

[33]  J. T. Kadonaga,et al.  Biochemical Analysis of Distinct Activation Functions in p300 That Enhance Transcription Initiation with Chromatin Templates , 1999, Molecular and Cellular Biology.

[34]  Wei Gu,et al.  Activation of p53 Sequence-Specific DNA Binding by Acetylation of the p53 C-Terminal Domain , 1997, Cell.

[35]  Daniel Panne,et al.  The enhanceosome. , 2008, Current opinion in structural biology.

[36]  M. Merika,et al.  Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. , 1998, Molecular cell.