Inference of Circadian Regulatory Pathways Based on Delay Differential Equations

Inference of circadian regulatory network models is highly challenging due to the number of biological species and non-linear interactions. In addition, statistical methods that require the numerical integration of the data model are computationally expensive.

[1]  Dirk Husmeier,et al.  A Bayesian approach for parameter estimation in the extended clock gene circuit of Arabidopsis thaliana , 2013, BMC Bioinformatics.

[2]  Carl E. Rasmussen,et al.  Derivative Observations in Gaussian Process Models of Dynamic Systems , 2002, NIPS.

[3]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[4]  Neil D. Lawrence,et al.  Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes , 2008, NIPS.

[5]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[6]  David Higdon,et al.  Gaussian Process Modeling of Derivative Curves , 2013, Technometrics.

[7]  Joe W. Gray,et al.  Causal network inference using biochemical kinetics , 2014, Bioinform..

[8]  Hanspeter Herzel,et al.  Timing of circadian genes in mammalian tissues , 2014, Scientific Reports.

[9]  Steve A. Kay,et al.  Clocks not winding down: unravelling circadian networks , 2010, Nature Reviews Molecular Cell Biology.

[10]  Andrew J. Millar,et al.  Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs , 2013, BMC Systems Biology.

[11]  A. Millar,et al.  The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops , 2012, Molecular systems biology.

[12]  Mark A. Girolami,et al.  Bayesian ranking of biochemical system models , 2008, Bioinform..

[13]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[14]  Mark A. Girolami,et al.  Bayesian ranking of biochemical system models , 2008, Bioinform..

[15]  C. Robert,et al.  Deviance information criteria for missing data models , 2006 .

[16]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[17]  Carl E. Rasmussen,et al.  Gaussian Processes for Machine Learning (GPML) Toolbox , 2010, J. Mach. Learn. Res..

[18]  Dirk Husmeier,et al.  ODE parameter inference using adaptive gradient matching with Gaussian processes , 2013, AISTATS.

[19]  David Barber,et al.  Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations , 2014, ICML.

[20]  Hanspeter Herzel,et al.  The Interplay of cis-Regulatory Elements Rules Circadian Rhythms in Mouse Liver , 2012, PloS one.