CLASSICAL SOLUTIONS IN FIELD THEORY

In recent years there has been much progress in discovering solutions to the non-linear differential equations of classical field theory. However, it would be impossible to review all the work that has been done and the intention here instead is to discuss a small, but to my mind significant, area of development taking place in Euclidean field theories. Other solutions, corresponding to Yang-Mills solitons or monopoles, will be discussed by David Olive in his lectures and will not be mentioned in detail here.

[1]  B. Berg,et al.  Computation of quantum fluctuations of quark fields in an arbitrary Yang-Mills instanton background , 1979 .

[2]  P. Goddard,et al.  SOME ASPECTS OF INSTANTONS , 1980 .

[3]  A. M. Din,et al.  Properties of general classical CPn−1 solutions , 1980 .

[4]  W. Nahm A simple formalism for the BPS monopole , 1980 .

[5]  Comments on the computation of quantum fluctuations of gluons in a multi-instanton background , 1980 .

[6]  A. M. Din,et al.  General classical solutions in the CPN−1 model , 1980 .

[7]  A. Belavin,et al.  Quantum fluctuations of multi-instanton solutions , 1979 .

[8]  I. Jack Multi-instanton determinants for tensor product gauge fields , 1980 .

[9]  A. Polyakov,et al.  Metastable States of Two-Dimensional Isotropic Ferromagnets , 1975 .

[10]  S. Coleman,et al.  The Uses of Instantons , 1978 .

[11]  D. B. Creamer,et al.  Vacuum polarization about instantons , 1978 .

[12]  H. Osborn,et al.  The functional measure for the exact SU(2) two instanton solution , 1981 .

[13]  W. Nahm On Abelian self-dual multimonopoles , 1980 .

[14]  A. Schwarz On Regular Solutions of Euclidean Yang-Mills Equations , 1977 .

[15]  M. Atiyah,et al.  Construction of Instantons , 1978 .

[16]  H. Borchers,et al.  Local theory of solutions for the 0(2k+1) σ-model , 1980 .

[17]  M. Atiyah,et al.  Self-duality in four-dimensional Riemannian geometry , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  H. Osborn Calculation of multi-instanton determinants , 1979 .

[19]  A. Polyakov,et al.  Pseudoparticle Solutions of the Yang-Mills Equations , 1975 .

[20]  A. Perelomov,et al.  Solution of the duality equations for the two-dimensional SU(N)-invariant chiral model , 1978 .

[21]  C. Nohl,et al.  Conformal Properties of Pseudoparticle Configurations , 1977 .

[22]  H. Eichenherr SU(N) Invariant Nonlinear Sigma Models , 1978 .

[23]  H. Eichenherr SU(N) invariant non-linear σ models , 1978 .