Proteomic analysis of Rhodospirillum rubrum after carbon monoxide exposure reveals an important effect on metallic cofactor biosynthesis.

[1]  W. Stahl,et al.  Carbon monoxide - beyond toxicity? , 2020, Toxicology letters.

[2]  T. Palmer,et al.  Activation of a [NiFe]-hydrogenase-4 isoenzyme by maturation proteases , 2020, Microbiology.

[3]  Y. Matsumoto,et al.  Mechanistic insights into heme-mediated transcriptional regulation via a bacterial manganese-binding iron regulator, iron response regulator (Irr) , 2020, The Journal of Biological Chemistry.

[4]  R. Wattiez,et al.  Global Proteomic Analysis Reveals High Light Intensity Adaptation Strategies and Polyhydroxyalkanoate Production in Rhodospirillum rubrum Cultivated With Acetate as Carbon Source , 2020, Frontiers in Microbiology.

[5]  Yoko Sato,et al.  KEGG Mapper for inferring cellular functions from protein sequences , 2019, Protein science : a publication of the Protein Society.

[6]  V. Méjean,et al.  The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria. , 2019, Metallomics.

[7]  S. Gribaldo,et al.  The SUF system: An ABC ATPase-dependent protein complex with a role in Fe-S cluster biogenesis. , 2019, Research in microbiology.

[8]  L. M. Saraiva,et al.  Metabolomics of Escherichia coli Treated with the Antimicrobial Carbon Monoxide-Releasing Molecule CORM-3 Reveals Tricarboxylic Acid Cycle as Major Target , 2019, Antimicrobial Agents and Chemotherapy.

[9]  S. Leimkühler,et al.  Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli , 2019, Journal of bacteriology.

[10]  P. Carpentier,et al.  New insights into the tetrameric family of the Fur metalloregulators , 2019, BioMetals.

[11]  S. Cianférani,et al.  A Proteomic View of Cellular Responses to Anticancer Quinoline-Copper Complexes , 2019, Proteomes.

[12]  Y. Sako,et al.  Transcriptome analysis of a thermophilic and hydrogenogenic carboxydotroph Carboxydothermus pertinax , 2019, Extremophiles.

[13]  S. Ciurli,et al.  The carbon monoxide dehydrogenase accessory protein CooJ is a histidine-rich multidomain dimer containing an unexpected Ni(II)-binding site , 2019, The Journal of Biological Chemistry.

[14]  L. A. Martínez-Cruz,et al.  Current Structural Knowledge on the CNNM Family of Magnesium Transport Mediators , 2019, International journal of molecular sciences.

[15]  S. Cianférani,et al.  A quantitative proteomic analysis of cofilin phosphorylation in myeloid cells and its modulation using the LIM kinase inhibitor Pyr1 , 2018, PloS one.

[16]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[17]  R. Ghosh,et al.  The monofunctional cobalamin biosynthesis enzyme precorrin-3B synthase (CobZRR) is essential for anaerobic photosynthesis in Rhodospirillum rubrum but not for aerobic dark metabolism. , 2018, Microbiology.

[18]  D. Scanlan,et al.  Bacterial zinc uptake regulator proteins and their regulons , 2018, Biochemical Society transactions.

[19]  M. Alfano,et al.  The biologically mediated water–gas shift reaction: structure, function and biosynthesis of monofunctional [NiFe]-carbon monoxide dehydrogenases , 2018 .

[20]  J. Pérard,et al.  Biophysical and structural characterization of the putative nickel chaperone CooT from Carboxydothermus hydrogenoformans , 2018, JBIC Journal of Biological Inorganic Chemistry.

[21]  L. Fornecker,et al.  Extended investigation of tube-gel sample preparation: a versatile and simple choice for high throughput quantitative proteomics , 2018, Scientific Reports.

[22]  T. Poulos,et al.  Testing the N-Terminal Velcro Model of CooA Carbon Monoxide Activation. , 2018, Biochemistry.

[23]  T. Rabilloud Optimization of the cydex blue assay: A one-step colorimetric protein assay using cyclodextrins and compatible with detergents and reducers , 2018, PloS one.

[24]  T. Agapie,et al.  A Thermodynamic Model for Redox-Dependent Binding of Carbon Monoxide at Site-Differentiated, High Spin Iron Clusters. , 2018, Journal of the American Chemical Society.

[25]  G. Cagney,et al.  Three novel proteins co-localise with polyhydroxybutyrate (PHB) granules in Rhodospirillum rubrum S1. , 2018, Microbiology.

[26]  J. Pérard,et al.  Iron–sulfur clusters biogenesis by the SUF machinery: close to the molecular mechanism understanding , 2017, JBIC Journal of Biological Inorganic Chemistry.

[27]  Sarah Dubrac,et al.  Structure and function of the Leptospira interrogans peroxide stress regulator (PerR), an atypical PerR devoid of a structural metal-binding site , 2017, The Journal of Biological Chemistry.

[28]  S. Leimkühler Shared function and moonlighting proteins in molybdenum cofactor biosynthesis , 2017, Biological chemistry.

[29]  Jie Kang,et al.  Microbial production of vitamin B12: a review and future perspectives , 2017, Microbial Cell Factories.

[30]  A. Stams,et al.  Proteomic Analysis of the Hydrogen and Carbon Monoxide Metabolism of Methanothermobacter marburgensis , 2016, Front. Microbiol..

[31]  G. Sanguinetti,et al.  Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance , 2016, Antioxidants & redox signaling.

[32]  M. A. Prieto,et al.  Carbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrum. , 2016, Environmental microbiology.

[33]  G. Sanguinetti,et al.  CO-Releasing Molecules Have Nonheme Targets in Bacteria: Transcriptomic, Mathematical Modeling and Biochemical Analyses of CORM-3 [Ru(CO)3Cl(glycinate)] Actions on a Heme-Deficient Mutant of Escherichia coli , 2015, Antioxidants & redox signaling.

[34]  R. Poole,et al.  CO-releasing Metal Carbonyl Compounds as Antimicrobial Agents in the Post-antibiotic Era , 2015, The Journal of Biological Chemistry.

[35]  R. Wattiez,et al.  New insight into the photoheterotrophic growth of the isocytrate lyase-lacking purple bacterium Rhodospirillum rubrum on acetate. , 2015, Microbiology.

[36]  J. Korlach,et al.  Genome Annotation Provides Insight into Carbon Monoxide and Hydrogen Metabolism in Rubrivivax gelatinosus , 2014, PloS one.

[37]  A. Mondragón,et al.  Structural and Mechanistic Basis of Zinc Regulation Across the E. coli Zur Regulon , 2014, PLoS biology.

[38]  M. Fillat The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. , 2014, Archives of biochemistry and biophysics.

[39]  J. Karty,et al.  Vitamin B12 regulates photosystem gene expression via the CrtJ antirepressor AerR in Rhodobacter capsulatus , 2014, Molecular microbiology.

[40]  A. Herrmann,et al.  Total variance should drive data handling strategies in third generation proteomic studies , 2013, Proteomics.

[41]  S. Leimkühler,et al.  Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. , 2013, Biochimica et biophysica acta.

[42]  T. Selmer,et al.  An Innovative Cloning Platform Enables Large-Scale Production and Maturation of an Oxygen-Tolerant [NiFe]-Hydrogenase from Cupriavidus necator in Escherichia coli , 2013, PLoS ONE.

[43]  R. Olsen,et al.  Crystal Structure of Peroxide Stress Regulator from Streptococcus pyogenes Provides Functional Insights into the Mechanism of Oxidative Stress Sensing* , 2013, The Journal of Biological Chemistry.

[44]  Yong Zhang,et al.  Iron Binding Site in a Global Regulator in Bacteria - Ferric Uptake Regulator (Fur) Protein: Structure, Mössbauer Properties, and Functional Implication. , 2012, The journal of physical chemistry letters.

[45]  H. Vogel,et al.  Solution Structure of Escherichia coli FeoA and Its Potential Role in Bacterial Ferrous Iron Transport , 2012, Journal of bacteriology.

[46]  R. Batey,et al.  B12 cofactors directly stabilize an mRNA regulatory switch , 2012, Nature.

[47]  A. Arkin,et al.  Deletion of the Desulfovibrio vulgaris Carbon Monoxide Sensor Invokes Global Changes in Transcription , 2012, Journal of bacteriology.

[48]  H. Sahl,et al.  Cytoplasmic Sulfurtransferases in the Purple Sulfur Bacterium Allochromatium vinosum: Evidence for Sulfur Transfer from DsrEFH to DsrC , 2012, PloS one.

[49]  A. Stintzi,et al.  Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulation , 2012, Proceedings of the National Academy of Sciences.

[50]  Min-Sik Kim,et al.  Proteome Analyses of Hydrogen-producing Hyperthermophilic Archaeon Thermococcus onnurineus NA1 in Different One-carbon Substrate Culture Conditions* , 2012, Molecular & Cellular Proteomics.

[51]  B. Kräutler,et al.  Vitamin B12-derivatives-enzyme cofactors and ligands of proteins and nucleic acids. , 2011, Chemical Society reviews.

[52]  C. Singleton,et al.  Heme binding to the second, lower‐affinity site of the global iron regulator Irr from Rhizobium leguminosarum promotes oligomerization , 2011, The FEBS journal.

[53]  N. Lorente,et al.  Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation. , 2011, Nature chemistry.

[54]  R. Kerby,et al.  Sustaining N2-Dependent Growth in the Presence of CO , 2010, Journal of bacteriology.

[55]  Mingfei Zhou,et al.  Formation and characterization of magnesium bisozonide and carbonyl complexes in solid argon. , 2010, The journal of physical chemistry. A.

[56]  A. Stams,et al.  Carbon Monoxide as an Electron Donor for the Biological Reduction of Sulphate , 2010, International journal of microbiology.

[57]  Deyu Zhu,et al.  Crystallization and preliminary crystallographic studies of CorC, a magnesium-ion transporter. , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[58]  C. Singleton,et al.  Heme-responsive DNA Binding by the Global Iron Regulator Irr from Rhizobium leguminosarum* , 2010, The Journal of Biological Chemistry.

[59]  W. Lubitz,et al.  Inhibition of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F by carbon monoxide: an FTIR and EPR spectroscopic study. , 2010, Biochimica et biophysica acta.

[60]  Olivier Genest,et al.  Multiple roles of TorD-like chaperones in the biogenesis of molybdoenzymes. , 2009, FEMS microbiology letters.

[61]  Md. Arif Sheikh,et al.  Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co‐ordination , 2009, Molecular microbiology.

[62]  M. Mergeay,et al.  Shotgun proteome analysis of Rhodospirillum rubrum S1H: integrating data from gel-free and gel-based peptides fractionation methods. , 2009, Journal of proteome research.

[63]  K. Chung,et al.  Structural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognition , 2009, Nucleic acids research.

[64]  K. Karlin,et al.  Copper-Carbon Bonds in Mechanistic and Structural Probing of Proteins as well as in Situations where Copper is a Catalytic or Receptor Site. , 2009, Metal ions in life sciences.

[65]  M. Fontecave,et al.  NfuA, a New Factor Required for Maturing Fe/S Proteins in Escherichia coli under Oxidative Stress and Iron Starvation Conditions* , 2008, Journal of Biological Chemistry.

[66]  W. L. Ruzzo,et al.  A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism , 2008, Molecular microbiology.

[67]  R. Kerby,et al.  RcoM: A New Single-Component Transcriptional Regulator of CO Metabolism in Bacteria , 2008, Journal of bacteriology.

[68]  C. Williams,et al.  Bacterial synthesis of biodegradable polyhydroxyalkanoates , 2007, Journal of applied microbiology.

[69]  E. Garman,et al.  Crystal Structure and Function of the Zinc Uptake Regulator FurB from Mycobacterium tuberculosis* , 2007, Journal of Biological Chemistry.

[70]  Mikhail S. Gelfand,et al.  Living without Fur: the subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other α-proteobacteria , 2007, BioMetals.

[71]  R. Sawers,et al.  Maturation of [NiFe]-hydrogenases in Escherichia coli , 2007, BioMetals.

[72]  Mikhail S. Gelfand,et al.  Computational Reconstruction of Iron- and Manganese-Responsive Transcriptional Networks in α-Proteobacteria , 2006, PLoS Comput. Biol..

[73]  Qiang Zhou,et al.  Escherichia coli CorA Periplasmic Domain Functions as a Homotetramer to Bind Substrate* , 2006, Journal of Biological Chemistry.

[74]  J. Ferrer,et al.  Crystal structure of the apo‐PerR‐Zn protein from Bacillus subtilis , 2006, Molecular microbiology.

[75]  J. Dupuy,et al.  Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography* , 2006, Journal of Biological Chemistry.

[76]  C. Thompson,et al.  Nur, a nickel‐responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor , 2006, Molecular microbiology.

[77]  S. Singer,et al.  New insights into the mechanism of nickel insertion into carbon monoxide dehydrogenase: analysis of Rhodospirillum rubrum carbon monoxide dehydrogenase variants with substituted ligands to the [Fe3S4] portion of the active-site C-cluster , 2005, JBIC Journal of Biological Inorganic Chemistry.

[78]  S. Santabarbara,et al.  Identification and Characterization of a Novel Vitamin B12 (Cobalamin) Biosynthetic Enzyme (CobZ) from Rhodobacter capsulatus, Containing Flavin, Heme, and Fe-S Cofactors* , 2005, Journal of Biological Chemistry.

[79]  Jeffrey Green,et al.  Bacterial redox sensors , 2004, Nature Reviews Microbiology.

[80]  Simone Reinhardt,et al.  The “Intracellular” Poly(3-Hydroxybutyrate) (PHB) Depolymerase of Rhodospirillum rubrum Is a Periplasm-Located Protein with Specificity for Native PHB and with Structural Similarity to Extracellular PHB Depolymerases , 2004, Journal of bacteriology.

[81]  R. Breaker,et al.  Gene regulation by riboswitches , 2004, Nature Reviews Molecular Cell Biology.

[82]  D. Schüler,et al.  Unraveling the Function of the Rhodospirillum rubrum Activator of Polyhydroxybutyrate (PHB) Degradation: the Activator Is a PHB-Granule-Bound Protein (Phasin) , 2004, Journal of bacteriology.

[83]  P. Lescuyer,et al.  A versatile electrophoresis system for the analysis of high‐ and low‐molecular‐weight proteins , 2003, Electrophoresis.

[84]  V. Santoni,et al.  Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two‐dimensional electrophoresis , 2003, Proteomics.

[85]  Ehmke Pohl,et al.  Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator , 2003, Molecular microbiology.

[86]  D. Richardson,et al.  Effects of nitrogen monoxide and carbon monoxide on molecular and cellular iron metabolism: mirror-image effector molecules that target iron. , 2003, The Biochemical journal.

[87]  A. K. Mohanty,et al.  Identification of the Periplasmic Cobalamin-Binding Protein BtuF of Escherichia coli , 2002, Journal of bacteriology.

[88]  K. Hantke Iron and metal regulation in bacteria. , 2001, Current opinion in microbiology.

[89]  J. Duus,et al.  Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[90]  B. J. Lemon,et al.  Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. , 1999, Biochemistry.

[91]  P. Ludden,et al.  Ni2+ Transport and Accumulation inRhodospirillum rubrum , 1999, Journal of bacteriology.

[92]  R. M. Allen,et al.  Iron−Sulfur Proteins with Nonredox Functions , 1996 .

[93]  D. Shelver,et al.  Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum , 1996, Journal of bacteriology.

[94]  R. Kerby,et al.  Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme , 1996, Journal of bacteriology.

[95]  R. Kerby,et al.  Characterization of a CO-responsive Transcriptional Activator from Rhodospirillum rubrum(*) , 1996, The Journal of Biological Chemistry.

[96]  K. Shanmugam,et al.  Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli , 1995, Journal of bacteriology.

[97]  R. Kerby,et al.  Carbon monoxide-dependent growth of Rhodospirillum rubrum , 1995, Journal of bacteriology.

[98]  M. Kammler,et al.  Characterization of the ferrous iron uptake system of Escherichia coli , 1993, Journal of bacteriology.

[99]  R. Matthews,et al.  Comparison of cobalamin-independent and cobalamin-dependent methionine synthases from Escherichia coli: two solutions to the same chemical problem. , 1992, Biochemistry.

[100]  C. Miller,et al.  Magnesium transport in Salmonella typhimurium: the influence of new mutations conferring Co2+ resistance on the CorA Mg2+ transport system , 1991, Molecular microbiology.

[101]  D. Reif,et al.  Nitric oxide mediates iron release from ferritin. , 1990, Archives of biochemistry and biophysics.

[102]  S. Murrell,et al.  Carbon monoxide dehydrogenase from Rhodospirillum rubrum , 1984, Journal of bacteriology.

[103]  Annick Wilmotte,et al.  Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regeneration system for long-haul space exploration missions. , 2006, Research in microbiology.

[104]  M. Vanoni,et al.  Structure--function studies on the iron-sulfur flavoenzyme glutamate synthase: an unexpectedly complex self-regulated enzyme. , 2005, Archives of biochemistry and biophysics.

[105]  P. Vignais,et al.  Molecular biology of membrane bound H2 uptake hydrogenases , 2004, Archives of Microbiology.

[106]  T. Lyubimova,et al.  Photopolymerization of polyacrylamide gels with methylene blue , 1993, Electrophoresis.

[107]  Ronald Begg,et al.  Edinburgh Research Explorer Analysis of the Bacterial Response to Ru(CO) 3 Cl(Glycinate) (CORM-3) and the Inactivated Compound Identifies the Role Played by the Ruthenium Compound and Reveals Sulfur-Containing Species as a Major Target of CORM-3 Action . , 2022 .