The Subaru-XMM-Newton Deep Survey (SXDS). VIII. Multi-wavelength identification, optical/NIR spectroscopic properties, and photometric redshifts of X-ray sources

We report on the multi-wavelength identification of the X-ray sources found in the Subaru-XMM-Newton Deep Survey (SXDS) using deep imaging data covering the wavelength range between the far-UV and mid-IR (MIR). We select a primary counterpart of each X-ray source by applying the likelihood ratio method to R-band, 3.6 μm, near-UV, and 24 μm source catalogs as well as matching catalogs of active galactic nucleus (AGN) candidates selected in 1.4 GHz radio and i-band variability surveys. Once candidates for Galactic stars, ultra-luminous X-ray sources in a nearby galaxy, and clusters of galaxies are removed there are 896 AGN candidates in the sample. We conduct spectroscopic observations of the primary counterparts with multi-object spectrographs in the optical and NIR; 65% of the X-ray AGN candidates are spectroscopically identified. For the remaining X-ray AGN candidates, we evaluate their photometric redshift with photometric data in 15 bands. Utilizing the multi-wavelength photometric data of the large sample of X-ray-selected AGNs, we evaluate the stellar masses, M, of the host galaxies of the narrow-line AGNs. The distribution of the stellar mass is remarkably constant from z = 0.1 to 4.0. The relation between M and 2-10 keV luminosity can be explained with strong cosmological evolution of the relationship between the black hole mass and M. We also evaluate the scatter of the UV-MIR spectral energy distribution (SED) of the X-ray AGNs as a function of X-ray luminosity and absorption by the nucleus. The scatter is compared with galaxies which have redshift and stellar mass distribution matched with the X-ray AGN. The UV-NIR (near-IR) SEDs of obscured X-ray AGNs are similar to those of the galaxies in the matched sample. In the NIR-MIR range, the median SEDs of X-ray AGNs are redder, but the scatter of the SEDs of the X-ray AGN broadly overlaps that of the galaxies in the matched sample.

[1]  D. Elbaz,et al.  GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4 , 2014, 1407.5072.

[2]  G. Cresci,et al.  The MBH-M* relation for X-ray-obscured, red QSOs at 1.2 < z < 2.6 , 2014, 1406.6094.

[3]  M. Watson,et al.  TOWARD THE STANDARD POPULATION SYNTHESIS MODEL OF THE X-RAY BACKGROUND: EVOLUTION OF X-RAY LUMINOSITY AND ABSORPTION FUNCTIONS OF ACTIVE GALACTIC NUCLEI INCLUDING COMPTON-THICK POPULATIONS , 2014, 1402.1836.

[4]  L. Wisotzki,et al.  Accounting for selection effects in the BH-bulge relations: no evidence for cosmological evolution , 2013, 1312.5610.

[5]  K. Schawinski,et al.  THE OBSCURED FRACTION OF ACTIVE GALACTIC NUCLEI IN THE XMM-COSMOS SURVEY: A SPECTRAL ENERGY DISTRIBUTION PERSPECTIVE , 2013, 1309.0814.

[6]  Japan.,et al.  PHYSICAL PROPERTIES, STAR FORMATION, AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN BALMER BREAK GALAXIES AT 0 < z < 1 , 2013, 1306.0905.

[7]  M. Cirasuolo,et al.  High-velocity outflows from young star-forming galaxies in the UKIDSS Ultra-Deep Survey , 2013, 1304.7276.

[8]  J. Silverman,et al.  THE BLACK HOLE–BULGE MASS RELATION OF ACTIVE GALACTIC NUCLEI IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH SURVEY , 2012, 1212.2999.

[9]  H. Lee,et al.  BLACK HOLE MASS AND EDDINGTON RATIO DISTRIBUTION FUNCTIONS OF X-RAY-SELECTED BROAD-LINE AGNs AT z ∼ 1.4 IN THE SUBARU XMM-NEWTON DEEP FIELD , 2012, 1211.0069.

[10]  L. Ho,et al.  Spectral energy distributions of type 1 AGN in XMM-COSMOS – II. Shape evolution , 2012, 1210.3033.

[11]  L. Ho,et al.  SPECTRAL ENERGY DISTRIBUTIONS OF TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. I. THE XMM-COSMOS SAMPLE , 2012, 1209.1478.

[12]  M. Watson,et al.  COMOVING SPACE DENSITY AND OBSCURED FRACTION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE SUBARU/XMM-NEWTON DEEP SURVEY , 2012, 1208.5050.

[13]  D. Stern,et al.  Using the Bright Ultrahard XMM-Newton survey to define an IR selection of luminous AGN based on WISE colours , 2012, 1208.2530.

[14]  K. Schawinski,et al.  THE CHANDRA COSMOS SURVEY. III. OPTICAL AND INFRARED IDENTIFICATION OF X-RAY POINT SOURCES , 2012, 1205.5030.

[15]  M. Cirasuolo,et al.  The sizes, masses and specific star formation rates of massive galaxies at 1.3 < z < 1.5: strong evidence in favour of evolution via minor mergers , 2012, 1205.4058.

[16]  A. Laor,et al.  Type 1 low z AGN. I. Emission properties , 2012, 1203.3158.

[17]  J. L. Donley,et al.  IDENTIFYING LUMINOUS ACTIVE GALACTIC NUCLEI IN DEEP SURVEYS: REVISED IRAC SELECTION CRITERIA , 2012, 1201.3899.

[18]  J. Trump,et al.  Identifying Luminous AGN in Deep Surveys: Revised IRAC Selection Criteria , 2012 .

[19]  J. Dunlop,et al.  Radio imaging of the Subaru/XMM–NewtonDeep Field– III. Evolution of the radio luminosity function beyond z= 1 , 2012, 1201.3225.

[20]  S. Serjeant,et al.  Star Formation and AGN Activity in Galaxies Classified Using the 1.6 μm Bump and PAH Features at z = 0.4-2 , 2011, 1112.6273.

[21]  M. Akiyama,et al.  FIBRE-Pac : FMOS Image-Based Reduction Package , 2011, 1111.6746.

[22]  M. Giavalisco,et al.  X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO z = 3: RESULTS FROM CANDELS/CDF-S , 2011, 1110.3816.

[23]  D. Schneider,et al.  X-RAY SPECTRAL CONSTRAINTS FOR z ≈ 2 MASSIVE GALAXIES: THE IDENTIFICATION OF REFLECTION-DOMINATED ACTIVE GALACTIC NUCLEI , 2011, 1106.1443.

[24]  J. Trump,et al.  Black hole accretion and host galaxies of obscured quasars in XMM-COSMOS , 2011, 1105.5395.

[25]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[26]  T. Treu,et al.  THE RELATION BETWEEN BLACK HOLE MASS AND HOST SPHEROID STELLAR MASS OUT TO z ∼ 2 , 2011, 1102.1975.

[27]  A. Marconi,et al.  The Spitzer/IRAC view of black hole–bulge scaling relations , 2010, 1012.3073.

[28]  K. Schawinski,et al.  THE MULTIWAVELENGTH SURVEY BY YALE–CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S , 2010, 1008.2974.

[29]  D. M. Alexander,et al.  COLOR–MAGNITUDE RELATIONS OF ACTIVE AND NON-ACTIVE GALAXIES IN THE CHANDRA DEEP FIELDS: HIGH-REDSHIFT CONSTRAINTS AND STELLAR-MASS SELECTION EFFECTS , 2010, 1007.1453.

[30]  Jurek Brzeski,et al.  Fibre-Multi-Object Spectrograph (FMOS) for Subaru Telescope , 2010, SPIE Astronomical Telescopes + Instrumentation.

[31]  S. Serjeant,et al.  Polycyclic aromatic hydrocarbon (PAH) luminous galaxies at z 1 , 2010, 1002.3654.

[32]  B. Garilli,et al.  THE XMM-NEWTON WIDE-FIELD SURVEY IN THE COSMOS FIELD (XMM-COSMOS): DEMOGRAPHY AND MULTIWAVELENGTH PROPERTIES OF OBSCURED AND UNOBSCURED LUMINOUS ACTIVE GALACTIC NUCLEI , 2010, 1004.2790.

[33]  I. College,et al.  Infrared Excess sources: Compton thick QSOs, low‐luminosity Seyferts or starbursts? , 2010, 1003.5218.

[34]  D. M. Alexander,et al.  IDENTIFICATIONS AND PHOTOMETRIC REDSHIFTS OF THE 2 Ms CHANDRA DEEP FIELD-SOUTH SOURCES , 2010, 1002.3154.

[35]  J. Dunlop,et al.  X-ray groups and clusters of galaxies in the Subaru–XMM Deep Field , 2009, 0912.0039.

[36]  A. Treves,et al.  The quasar relation through cosmic time – II. Evidence for evolution from z = 3 to the present age , 2009, 0911.2988.

[37]  J. Trump,et al.  ON THE COSMIC EVOLUTION OF THE SCALING RELATIONS BETWEEN BLACK HOLES AND THEIR HOST GALAXIES: BROAD-LINE ACTIVE GALACTIC NUCLEI IN THE zCOSMOS SURVEY , 2009, 0910.4970.

[38]  M. L. N. Ashby,et al.  The evolution of the hard X-ray luminosity function of AGN , 2009, 0910.1141.

[39]  G. Zamorani,et al.  Black hole growth and starburst activity at z = 0.6–4 in the Chandra Deep Field South. Host galaxies properties of obscured AGN , 2009, 0910.1007.

[40]  J. Trump,et al.  MASSIVE GALAXIES IN COSMOS: EVOLUTION OF BLACK HOLE VERSUS BULGE MASS BUT NOT VERSUS TOTAL STELLAR MASS OVER THE LAST 9 Gyr? , 2009, 0907.5199.

[41]  T. Ichikawa,et al.  MOIRCS DEEP SURVEY. III. ACTIVE GALACTIC NUCLEI IN MASSIVE GALAXIES AT z = 2–4 , 2009, 0905.3320.

[42]  K. Ohta,et al.  CO-EVOLUTION OF SUPERMASSIVE BLACK HOLE AND HOST GALAXY FROM z ∼ 1 TO z = 0 , 2009 .

[43]  L. Trouille,et al.  THE OPTX PROJECT. II. HARD X-RAY LUMINOSITY FUNCTIONS OF ACTIVE GALACTIC NUCLEI FOR z ≲ 5 , 2009, 0903.4183.

[44]  Takamitsu Miyaji,et al.  THE CHANDRA COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG , 2009, 0903.2062.

[45]  L. Guzzo,et al.  The XMM-Newton wide-field survey in the COSMOS field - The point-like X-ray source catalogue , 2009, 0901.2347.

[46]  J. Silverman,et al.  The XMM-Newton Serendipitous Survey. VI. The X-ray Luminosity Function , 2008, 0811.1450.

[47]  B. Garilli,et al.  ONGOING AND CO-EVOLVING STAR FORMATION IN zCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI , 2008, 0810.3653.

[48]  D. Thompson,et al.  PHOTOMETRIC REDSHIFT AND CLASSIFICATION FOR THE XMM–COSMOS SOURCES , 2008, 0809.2098.

[49]  A. Georgakakis,et al.  AEGIS-X: THE CHANDRA DEEP SURVEY OF THE EXTENDED GROTH STRIP , 2008, 0809.1349.

[50]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[51]  G. Zamorani,et al.  The XMM-Newton survey of the ELAIS-S1 field - II. Optical identifications and multiwavelength catalogue of X-ray sources , 2008, 0806.4778.

[52]  Jacobo Ebrero,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). III. X-Ray Data , 2008, 0806.2846.

[53]  A. M. Swinbank,et al.  A pilot survey for KX QSOs in the UKIDSS Ultra Deep Survey Field , 2008, 0806.2538.

[54]  S. Virani,et al.  Mid-Infrared Properties and Color Selection for X-Ray-Detected Active Galactic Nuclei in the MUSYC Extended Chandra Deep Field-South , 2008 .

[55]  C. I. O. Technology.,et al.  The X-ray luminosity function of AGN at z∼ 3 , 2008, 0804.0760.

[56]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). VII. Clustering Segregation with Ultraviolet and Optical Luminosities of Lyman Break Galaxies at z ~ 3 , 2008, 0801.4827.

[57]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). II. Optical Imaging and Photometric Catalogs , 2008, 0801.4017.

[58]  C. Papovich,et al.  The Host Galaxies and Black Holes of Typical z~0.5-1.4 AGNs , 2007, 0712.3121.

[59]  Mamoru Doi,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). VI. Properties of Active Galactic Nuclei Selected by Optical Variability , 2007, 0712.3106.

[60]  Mamoru Doi,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). V. Optically Faint Variable Object Survey , 2007, 0712.3108.

[61]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[62]  S. Virani,et al.  Mid-infrared Properties And Color-Selection For X-ray Detected Agn , 2007, 0803.0251.

[63]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[64]  G. Zamorani,et al.  Unveiling Obscured Accretion in the Chandra Deep Field-South , 2007, 0705.2864.

[65]  D. M. Alexander,et al.  Multiwavelength Study of Massive Galaxies at z ~ 2. II. Widespread Compton-thick Active Galactic Nuclei and the Concurrent Growth of Black Holes and Bulges , 2007, 0705.2832.

[66]  S. Okamura,et al.  Deep Spectroscopy of Systematically Surveyed Extended Lyα Sources at z ~ 3-5 , 2007, 0705.1494.

[67]  Tadafumi Takata,et al.  Radio imaging of the Subaru/XMM-Newton Deep Field - I. The 100-μJy catalogue, optical identifications, and the nature of the faint radio source population , 2006, astro-ph/0609529.

[68]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[69]  J. Lehár,et al.  Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts , 2006, astro-ph/0603248.

[70]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[71]  J. Dunlop,et al.  On the evolution of the black‐hole/spheroid mass ratio , 2005, astro-ph/0510121.

[72]  P. Ciliegi,et al.  The HELLAS2XMM Survey. VII. The Hard X-Ray Luminosity Function of AGNs up to z = 4: More Absorbed AGNs at Low Luminosities and High Redshifts , 2005, astro-ph/0509081.

[73]  Toru Yamada,et al.  The Number Density of Old Passively Evolving Galaxies at z = 1 in the Subaru/XMM-Newton Deep Survey Field , 2005, astro-ph/0508594.

[74]  M. Akiyama Host Galaxies of High-Redshift Active Galactic Nuclei in the Great Observatories Origins Deep Surveys Fields , 2005 .

[75]  J. L. Donley,et al.  Unveiling a Population of AGNs Not Detected in X-Rays , 2005, astro-ph/0507676.

[76]  R. Cutri,et al.  The ISO-2MASS AGN survey: on the type-1 sources , 2005, astro-ph/0507320.

[77]  Caltech,et al.  The Infrared Array Camera Component of the Spitzer Space Telescope Extragalactic First Look Survey , 2005, astro-ph/0507143.

[78]  G. Hasinger,et al.  Luminosity-dependent evolution of soft X-ray selected AGN : New Chandra and XMM-Newton surveys , 2005, astro-ph/0506118.

[79]  Subaru Telescope,et al.  Discovery of multiple ultra-luminous X-ray sources in the galaxy KUG 0214-057 ⋆ , 2005, astro-ph/0504355.

[80]  J. Brinkmann,et al.  Active Galactic Nuclei in the Sloan Digital Sky Survey. I. Sample Selection , 2005, astro-ph/0501059.

[81]  P. Capak,et al.  The Cosmic Evolution of Hard X-Ray-selected Active Galactic Nuclei , 2004, astro-ph/0410527.

[82]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[83]  Takeshi Miyaji,et al.  COSMOLOGICAL EVOLUTION OF THE HARD X-RAY AGN LUMINOSITY FUNCTION , 2004 .

[84]  Matthew Joseph Griffin,et al.  First Insights into the Spitzer Wide-Area Infrared Extragalactic Legacy Survey (SWIRE) Galaxy Populations , 2004 .

[85]  L. Knox,et al.  Testing Cosmological Models and Understanding Cosmological Parameter Determinations with Metaparameters , 2004, astro-ph/0407198.

[86]  G. Hasinger,et al.  Photometric Redshift of X-Ray Sources in the Chandra Deep Field-South , 2004, astro-ph/0406482.

[87]  D. Padgett,et al.  First Insights into the SWIRE Galaxy Populations , 2004, astro-ph/0406209.

[88]  I. Smail,et al.  Spitzer Observations of MAMBO Galaxies: Weeding Out Active Nuclei in Starbursting Protoellipticals , 2004, astro-ph/0406158.

[89]  F. Masci,et al.  Obscured and Unobscured Active Galactic Nuclei in the Spitzer Space Telescope First Look Survey , 2004, astro-ph/0405604.

[90]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[91]  M. Mignoli,et al.  The HELLAS2XMM survey V. Near-Infrared observations of X-ray sources with extreme X/O ratios , 2004, astro-ph/0401298.

[92]  R. Bender,et al.  Multiwavelength mapping of galaxy formation and evolution , 2003 .

[93]  R. Maiolino,et al.  Local supermassive black holes, relics of active galactic nuclei and the X-ray background , 2003, astro-ph/0311619.

[94]  Jr.,et al.  Chandra Multiwavelength Project. II. First Results of X-Ray Source Properties , 2003, astro-ph/0308493.

[95]  Takamitsu Miyaji,et al.  Cosmological Evolution of the Hard X-Ray Active Galactic Nucleus Luminosity Function and the Origin of the Hard X-Ray Background , 2003, astro-ph/0308140.

[96]  P. Ciliegi,et al.  The HELLAS2XMM survey IV. Optical identifications and the evolution of the accretion luminosity in the Universe , 2003, astro-ph/0306556.

[97]  S. M. Fall,et al.  A Possible New Population of Sources with Extreme X-Ray/Optical Ratios , 2003, astro-ph/0306407.

[98]  R. Nichol,et al.  Red and Reddened Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0305305.

[99]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[100]  S. Odewahn,et al.  The Infrared Counterparts of the Optically Unidentified Chandra Deep Field-South 1 Ms Sources , 2002, astro-ph/0211131.

[101]  W. Brandt,et al.  The 2-8 keV X-Ray Number Counts Determined from Chandra Blank Field Observations , 2002, astro-ph/0201186.

[102]  G. Chabrier The Galactic Disk Mass Budget. II. Brown Dwarf Mass Function and Density , 2001, astro-ph/0110024.

[103]  S. Serjeant,et al.  SWIRE: The SIRTF Wide‐Area Infrared Extragalactic Survey , 2001, astro-ph/0305375.

[104]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[105]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[106]  A. Zdziarski,et al.  Angle-dependent Compton reflection of X-rays and gamma-rays , 1995 .

[107]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[108]  Will Saunders,et al.  On the likelihood ratio for source identification. , 1992 .

[109]  Harvey T. MacGillivray,et al.  The identification of IRAS point sources. I: A 304 deg2 field centred on the south galactic pole , 1986 .

[110]  J. E. Gunn,et al.  Stellar spectrophotometric atlas, wavelengths from 3130 to 10800 A , 1983 .

[111]  Glenn E. Miller,et al.  The Initial mass function and stellar birthrate in the solar neighborhood , 1979 .

[112]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .

[113]  J. Newman,et al.  Accepted for publication in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 6/22/04 AEGIS: THE COLOR-MAGNITUDE RELATION FOR X-RAY SELECTED AGN , 2006 .

[114]  P. Hall,et al.  Multiwavelength Mapping of Galaxy Formation and Evolution , 2005 .

[115]  D. Padgett,et al.  The SWIRE Data Release 2: Image Atlases and Source Catalogs for ELAIS-N1, ELAIS-N2, XMM-LSS, and the Lockman Hole , 2005 .

[116]  M. Akiyama,et al.  Multiwavelength Observations of the Subaru/XMM-Newton Deep Field , 2005 .

[117]  Masayuki Akiyama HOST GALAXIES OF THE HIGH-REDSHIFT AGNS IN THE GOODS FIELDS , 2005 .

[118]  R. Mushotzky,et al.  Submitted to the Astronomical Journal The Chandra Large Area Synoptic X-ray Survey (CLASXS) of the Lockman Hole-Northwest: The X-ray Catalog , 2004 .

[119]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[120]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[121]  Submitted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 02/07/07 THE LUMINOSITY FUNCTION OF X-RAY SELECTED ACTIVE GALACTIC NUCLEI: EVOLUTION OF SUPERMASSIVE BLACK HOLES AT HIGH REDSHIFT , 2022 .

[122]  S. Okamura,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 03/07/07 DISCOVERY OF A GIANT LYα EMITTER NEAR THE REIONIZATION EPOCH 1,2 , 2022 .