Evolving structures of star-forming clusters

Context. Understanding the formation and evolution of young star clusters requires quantitative statistical measures of their structure. Aims. We investigate the structures of observed and modelled star-forming clusters. By considering the different evolutionary classes in the observations and the temporal evolution in models of gravoturbulent fragmentation, we study the temporal evolution of the cluster structures. Methods. We apply different statistical methods, in particular the normalised mean correlation length and the minimum spanning tree technique. We refine the normalisation of the clustering parameters by defining the area using the normalised convex hull of the objects and investigate the effect of two-dimensional projection of three-dimensional clusters. We introduce a new measure ξ for the elongation of a cluster. It is defined as the ratio of the cluster radius determined by an enclosing circle to the cluster radius derived from the normalised convex hull. Results. The mean separation of young stars increases with the evolutionary class, reflecting the expansion of the cluster. The clustering parameters of the model clusters correspond in many cases well to those from observed ones, especially when the ξ values are similar. No correlation of the clustering parameters with the turbulent environment of the molecular cloud is found, indicating that possible influences of the environment on the clustering behaviour are quickly smoothed out by the stellar velocity dispersion. The temporal evolution of the clustering parameters shows that the star cluster builds up from several subclusters and evolves to a more centrally concentrated cluster, while the cluster expands slower than new stars are formed.

[1]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[2]  A. A. Kaas,et al.  The young stellar population in the Serpens Cloud Core: An ISOCAM survey ⋆ ⋆⋆ , 2004, astro-ph/0404439.

[3]  S. Kitsionas,et al.  The structure of young star clusters , 1998, astro-ph/9809289.

[4]  J. Meiss,et al.  Computing connectedness: disconnectedness and discreteness , 2000 .

[5]  Interpreting the mean surface density of companions in star‐forming regions , 1998, astro-ph/9804154.

[6]  L. Hartmann,et al.  Spatial distribution of pre-main sequence stars in Taurus. , 1993 .

[7]  Star formation in unbound giant molecular clouds: the origin of OB associations? , 2005, astro-ph/0503141.

[8]  Number ratios of young stellar objects in embedded clusters , 2005, astro-ph/0503611.

[9]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[11]  L. Hartmann Flows, Fragmentation, and Star Formation. I. Low-Mass Stars in Taurus , 2002, astro-ph/0207216.

[12]  A Catalog of Optically Selected Cores , 1999, astro-ph/9901175.

[13]  R. Hurt,et al.  A Cluster of Class 0 Protostars in Serpens: An IRAS HIRES Study , 1996 .

[14]  A. Doroshkevich,et al.  Large Scale Structure in the SDSS Galaxy Survey , 2002 .

[15]  R. Larson Star formation in groups , 1995 .

[16]  B. Ripley,et al.  Finding the edge of a Poisson forest , 1977, Journal of Applied Probability.

[17]  F. Adams,et al.  Formal results regarding metric space techniques for the study of astrophysical maps , 1994, astro-ph/9404045.

[18]  R. Klessen,et al.  Protostellar mass accretion rates from gravoturbulent fragmentation , 2004, astro-ph/0402433.

[19]  R. Klessen,et al.  THE FORMATION OF STELLAR CLUSTERS: GAUSSIAN CLOUD CONDITIONS. I , 2022 .

[20]  I. A. Bonnell,et al.  Modelling accretion in protobinary systems , 1995 .

[21]  STAR FORMATION IN ISOLATED DISK GALAXIES. I. MODELS AND CHARACTERISTICS OF NONLINEAR GRAVITATIONAL COLLAPSE , 2005, astro-ph/0501022.

[22]  A. A. Kaas,et al.  ISOCAM observations of the rho Ophiuchi cloud: Luminosity and mass functions of the pre-main sequence embedded cluster , 2001, astro-ph/0103373.

[23]  A. Whitworth,et al.  The statistical analysis of star clusters , 2004, astro-ph/0403474.

[24]  J. Barrow,et al.  Minimal spanning trees, filaments and galaxy clustering , 1985 .

[25]  Jongsoo Kim,et al.  The Lifetimes and Evolution of Molecular Cloud Cores , 2005 .

[26]  A Census of the Young Cluster IC 348 , 2003, astro-ph/0304409.

[27]  Dussert,et al.  Minimal spanning tree: A new approach for studying order and disorder. , 1986, Physical review. B, Condensed matter.

[28]  J. Harju,et al.  Clumpy filaments of the Chamaeleon I cloud: C$\mathsf{^{18}}$O mapping with the SEST , 2004, astro-ph/0407608.

[29]  I. Bonnell,et al.  The hierarchical formation of a stellar cluster , 2003, astro-ph/0305082.

[30]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[31]  J. Gower,et al.  Minimum Spanning Trees and Single Linkage Cluster Analysis , 1969 .

[32]  A. Mazure,et al.  The use of minimal spanning tree to characterize the 2D cluster galaxy distribution , 1998 .

[33]  Anil K. Jain,et al.  A test of randomness based on the minimal spanning tree , 1983, Pattern Recognit. Lett..

[34]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[35]  R. Larson The physics of star formation , 2003, astro-ph/0306595.

[36]  M. Bate,et al.  Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity , 1997 .

[37]  R. Prim Shortest connection networks and some generalizations , 1957 .

[38]  The Stellar Mass Spectrum from Non-Isothermal Gravoturbulent Fragmentation , 2004, astro-ph/0410371.

[39]  Which Are the Youngest Protostars? Determining Properties of Confirmed and Candidate Class 0 Sources by Broadband Photometry , 2004, astro-ph/0410044.

[40]  Ralf Klessen GRAPESPH with fully periodic boundary conditions: fragmentation of molecular clouds , 1997 .