Analyses of stone surfaces by optical methods

Ornamental stone products are generally used for decorative cladding. A major quality parameter is their aesthetical appearance, which directly impacts their commercial value. The surface quality of stone products depends on the presence of defects both due to the unpredictability of natural materials and to the actual manufacturing process. This work starts reviewing the literature about optical methods for stone surface inspection. A classification is then proposed focusing on their industrial applicability in order to provide a guideline for future investigations. Three innovative systems are proposed and described in details: a vision system, an optical profilometer and a reflectometer for the inspection of polished, bushhammered, sand-blasted, flame-finished, waterjet processed, and laser engraved surfaces.

[1]  G. Obein,et al.  Difference scaling of gloss: nonlinearity, binocularity, and constancy. , 2004, Journal of vision.

[2]  V.G. Hernandez,et al.  Traditional and neural networks algorithms: applications to the inspection of marble slab , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[3]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[4]  A. Lynn Abbott,et al.  Active Stereo: Integrating Disparity, Vergence, Focus, Aperture and Calibration for Surface Estimation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  B. Michaelis,et al.  Improvement of the spatial resolution of an optical 3-D measurement procedure , 1997, IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings.

[6]  Ernest L. Hall,et al.  Encoded Moire Inspection Based on a Computer Solid Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Rafael Fort,et al.  Chromatic parameters as performance indicators for stone cleaning techniques , 2000 .

[8]  F. Xi,et al.  Modeling surface roughness in the stone polishing process , 2005 .

[9]  Maria E. Nadal,et al.  NIST reference goniophotometer for specular gloss measurements , 2001 .

[10]  Wei Luo,et al.  Using Models to Improve Stereo Reconstruction , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Ramakant Nevatia,et al.  Stereo Error Detection, Correction, and Evaluation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Tilo Pfeifer,et al.  Optical Methods for Dimensional Metrology in Production Engineering , 2002 .

[13]  Giuseppe Bonifazi,et al.  Ornamental stone finished product aesthetic inspection and characterization through a combined digital spectrophotometric approach , 2003, IS&T/SPIE Electronic Imaging.

[14]  Yuan F. Zheng,et al.  Passive and active stereo vision for smooth surface detection of deformed plates , 1995, IEEE Trans. Ind. Electron..

[15]  Francisco M. Martínez-Verdú,et al.  Influence of Surface Roughness on Color Changes in Building Stones , 2003 .

[16]  Wilma Polini,et al.  Bending radius dependance in AWJ machining of stone free-form profiles , 2003 .

[17]  B. Ramamoorthy,et al.  The influence of component inclination on surface finish evaluation using digital image processing , 2007 .

[18]  Hans Nørgaard Hansen,et al.  Quantitative Characterisation of Surface Texture , 2000 .

[19]  Specular-Gloss Measurement of Ceramic Materials , 1956 .

[20]  Xipeng Xu,et al.  Micro-structure detection of a glossy granite surface machined by the grinding process , 2002 .

[21]  Antonia Moropoulou,et al.  Surface roughness evaluation of marble by 3D laser profilometry and pulsed thermography , 2004 .

[22]  Gérard G. Medioni,et al.  3-D Surface Description from Binocular Stereo , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Azriel Rosenfeld,et al.  Image Analysis and Computer Vision: 1998 , 1999, Comput. Vis. Image Underst..

[24]  Marco Santochi,et al.  The quality control in the field of marble: an artificial vision system for the automated selection of tiles , 1995 .

[25]  David J. Whitehouse,et al.  Gloss and Surface Topography , 1994 .

[26]  Chiou-Shann Fuh,et al.  Image segmentation for stone-size inspection , 1995, Other Conferences.

[27]  David J. Whitehouse,et al.  Handbook of Surface Metrology , 2023 .

[28]  Giovanni Tantussi,et al.  The quality control of natural materials: defect detection on Carrara marble with an artificial vision system , 1997 .

[29]  Fehmi Erzincanli,et al.  Computer-assisted robotic tiling of mosaics , 2004, Robotica.

[30]  M. Santochi,et al.  The Shadow-Moiré Method Applied to 3D Model Copying , 1995 .

[31]  P. Fieguth,et al.  High-accuracy profiler that uses depth from focus. , 1994, Applied optics.

[32]  Wright Patterson Stereo Error Detection, Correction, and Evaluation , 1989 .

[33]  Zbigniew Otremba,et al.  Modelling the bidirectional reflectance distribution function (BRDF) of seawater polluted by an oil film. , 2004, Optics express.

[34]  B. Ramamoorthy,et al.  Statistical methods to compare the texture features of machined surfaces , 1996, Pattern Recognit..

[35]  Yuan F. Zheng,et al.  Integration of vision and laser displacement sensor for efficient and precise digitizing , 1994, Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems.

[36]  P. M. Lonardo,et al.  Emerging trends in surface metrology , 2002 .

[37]  D. White,et al.  Reflectometer for measuring the bidirectional reflectance of rough surfaces. , 1998, Applied optics.

[38]  Melvyn L. Smith,et al.  Robust and efficient automated detection of tooling defects in polished stone , 2005, Comput. Ind..