Data Sketching for Large-Scale Kalman Filtering

In an age of exponentially increasing data generation, performing inference tasks by utilizing the available information in its entirety is not always an affordable option. The present paper puts forth approaches to render tracking of large-scale dynamic processes affordable, by processing a reduced number of data. Two distinct methods are introduced for reducing the number of data involved per time step. The first method builds on reduction using low-complexity random projections, while the second performs censoring for data-adaptive measurement selection. Simulations on synthetic data, compare the proposed methods with competing alternatives, and corroborate their efficacy in terms of estimation accuracy over complexity reduction.

[1]  G. Galanisa,et al.  Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering , 2006 .

[2]  Kavé Salamatian,et al.  Traffic matrix tracking using Kalman filters , 2005, PERV.

[3]  Georgios B. Giannakis,et al.  Sensor-Centric Data Reduction for Estimation With WSNs via Censoring and Quantization , 2012, IEEE Transactions on Signal Processing.

[4]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[5]  Pramod K. Varshney,et al.  Posterior Crlb Based Sensor Selection for Target Tracking in Sensor Networks , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[6]  Christos Faloutsos,et al.  Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..

[7]  Lihua Xie,et al.  Asymptotically Optimal Parameter Estimation With Scheduled Measurements , 2013, IEEE Transactions on Signal Processing.

[8]  Claire J. Tomlin,et al.  On efficient sensor scheduling for linear dynamical systems , 2010, Proceedings of the 2010 American Control Conference.

[9]  Rudolf Mathar,et al.  Strategies for distributed sensor selection using convex optimization , 2012, 2012 IEEE Global Communications Conference (GLOBECOM).

[10]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[11]  S. Muthukrishnan,et al.  Sampling algorithms for l2 regression and applications , 2006, SODA '06.

[12]  Haris Vikalo,et al.  Greedy sensor selection: Leveraging submodularity , 2010, 49th IEEE Conference on Decision and Control (CDC).

[13]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data , 2009 .

[14]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[15]  Bruno Sinopoli,et al.  Kalman filtering with intermittent observations , 2004, IEEE Transactions on Automatic Control.

[16]  Kai-Bor Yu,et al.  Recursive updating the eigenvalue decomposition of a covariance matrix , 1991, IEEE Trans. Signal Process..

[17]  Georgios B. Giannakis,et al.  Dynamic Network Delay Cartography , 2012, IEEE Transactions on Information Theory.

[18]  John W. Fisher,et al.  Maximum Mutual Information Principle for Dynamic Sensor Query Problems , 2003, IPSN.

[19]  Lingji Chen,et al.  Optimal measurement selection for Any-time Kalman Filtering with processing constraints , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[20]  K. J. Ray Liu,et al.  Distributed State Estimation With Dimension Reduction Preprocessing , 2014, IEEE Transactions on Signal Processing.

[21]  Pramod K. Varshney,et al.  Sequential Bayesian Estimation With Censored Data for Multi-Sensor Systems , 2014, IEEE Transactions on Signal Processing.

[22]  Ioannis D. Schizas,et al.  Power-Efficient Dimensionality Reduction for Distributed Channel-Aware Kalman Tracking Using WSNs , 2009, IEEE Transactions on Signal Processing.

[23]  Giorgio Battistelli,et al.  Data-driven strategies for selective data transmission in sensor networks , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[24]  Zidong Wang,et al.  A survey of event-based strategies on control and estimation , 2014 .

[25]  Gang Wang,et al.  Power Scheduling of Kalman Filtering in Wireless Sensor Networks with Data Packet Drops , 2013 .

[26]  Malay Ghosh,et al.  Sequential Bayesian Estimation , 2011 .

[27]  S. Muthukrishnan,et al.  Faster least squares approximation , 2007, Numerische Mathematik.

[28]  Thierry Chonavel,et al.  Efficient methods for traffic matrix modeling and on-line estimation in large-scale IP networks , 2009, 2009 21st International Teletraffic Congress.

[29]  Giorgio Rizzoni,et al.  Event-based estimation of indicated torque for IC engines using sliding-mode observers , 1996 .

[30]  G. Pottie,et al.  Entropy-based sensor selection heuristic for target localization , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[31]  Michael W. Mahoney Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..

[32]  Stephen P. Boyd,et al.  Sensor Selection via Convex Optimization , 2009, IEEE Transactions on Signal Processing.

[33]  S. Eisenstat,et al.  A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..

[34]  Gang Wang,et al.  Adaptive censoring for large-scale regressions , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[35]  David P. Woodruff Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..

[36]  Georgios B. Giannakis,et al.  Online Censoring for Large-Scale Regressions with Application to Streaming Big Data , 2015, IEEE Transactions on Signal Processing.