Synthesis and characterization of anhydrous proton conducting inorganic–organic composite membranes for medium temperature proton exchange membrane fuel cells (PEMFCs)

We report on anhydrous proton conducting inorganic–organic composite membranes synthesized from tetraethoxysilane/poly(-dimethylsiloxane)/trimethylphosphate and 1-ethyl-3 methylimidazolium-bis (trifluoromethanesulfonyl) imide ionic liquid as sol–gel precursors. The Fourier transform infrared spectroscopy, 31P, 1H, and 13C Nuclear magnetic resonance, thermo gravimetric and differential thermal analysis measurements confirmed that the prepared hybrid membranes possess good chemical stability and are thermally stable up to 350 °C. Conductivity of all the fabricated hybrid membranes was measured under anhydrous conditions within the temperature range −20–150 °C, and a value of 4.87 × 10−3 S/cm at 150 °C was achieved for 40 wt% [EMI][TFSI] ionic liquid doped 72TEOS–18PDMS–10PO (OCH3)3 (mol %) hybrid membrane. For 40 wt% ionic liquid doped composite membrane, the measured hydrogen permeability value at 150 °C was 4 × 10−12 mol/cm s Pa.

[1]  Prashant V. Kamat,et al.  Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells , 2009 .

[2]  Stefania Ferrari,et al.  Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid , 2010 .

[3]  Masayuki Nogami,et al.  Inorganic–organic hybrid membranes with anhydrous proton conduction prepared from tetramethoxysilane/methyl-trimethoxysilane/trimethylphosphate and 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide for H2/O2 fuel cells , 2010 .

[4]  Triazole and triazole derivatives as proton transport facilitators in polymer electrolyte membrane fuel cells , 2009 .

[5]  Dennis W. Smith,et al.  Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB–PBI) for high temperature polymer electrolyte membrane fuel cells , 2009 .

[6]  Ned Djilali,et al.  Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities , 2007 .

[7]  Jingwei Hu,et al.  Degradation study on MEA in H3PO4/PBI high-temperature PEMFC life test , 2007 .

[8]  K. Tsunashima,et al.  Electrochemical Behavior of Lithium in Room-Temperature Phosphonium Ionic Liquids as Lithium Battery Electrolytes , 2008 .

[9]  M. Centeno,et al.  Thermal evolution of sol–gel-obtained phosphosilicate solids (SiPO) , 2001 .

[10]  Teresa J. Leo,et al.  Exergy analysis of PEM fuel cells for marine applications , 2010 .

[11]  Won-Yong Lee,et al.  A Study on Proton Conductivity of Composite Membranes with Various Ionic Liquids for High-Temperature Anhydrous Fuel Cells , 2009 .

[12]  Jie Yin,et al.  Synthesis of novel polybenzimidazoles with pendant amino groups and the formation of their crosslinked membranes for medium temperature fuel cell applications , 2009 .

[13]  M. Nogami,et al.  Synthesis and proton conductivity of large-sized crack-free mesostructured phosphorus-oxide-doped silica monoliths , 2008 .

[14]  H. Schmidt New type of non-crystalline solids between inorganic and organic materials , 1985 .

[15]  A. D. Modestov,et al.  Influence of Catalyst Layer Binder on Catalyst Utilization and Performance of Fuel Cell with Polybenzimidazole- H3PO4 Membrane , 2009 .

[16]  H. Ohno,et al.  Preparation of ion conductive inorganic–organic composite systems by in situ sol–gel reaction of polymerizable ionic liquids† , 2008 .

[17]  Werner Lehnert,et al.  Redistribution of Phosphoric Acid in Membrane Electrode Assemblies for High Temperature Polymer Electrolyte Fuel Cells , 2009 .

[18]  Yi Hu,et al.  Rubbery ormosils and their applications , 1992 .

[19]  Masayuki Nogami,et al.  Proton conducting organic–inorganic composite membranes under anhydrous conditions synthesized from tetraethoxysilane/methyltriethoxysilane/trimethyl phosphate and 1-butyl-3 methylimidazolium tetrafluoroborate , 2010 .

[20]  K. Chakrabarti,et al.  Silver doped ORMOSIL —an investigation on structural and physical properties , 2002 .

[21]  Carsten Agert,et al.  Anhydrous proton conducting membranes based on electron-deficient nanoparticles/PBI-OO/PFSA composites for high-temperature PEMFC , 2009 .

[22]  S. Çelik,et al.  Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly(glycidyl methacrylate) , 2008 .

[23]  Hongtan Liu,et al.  The effects of excess phosphoric acid in a Polybenzimidazole-based high temperature proton exchange membrane fuel cell , 2010 .

[24]  John B. Heywood,et al.  Future fuel cell and internal combustion engine automobile technologies: A 25-year life cycle and fleet impact assessment , 2006 .

[25]  S. Katayama,et al.  Processing and optical properties of patternable inorganic–organic hybrid films , 1999 .

[26]  Garth L. Wilkes,et al.  Synthesis and Characterization of New Alumina and Titania-Containing Hybrid Network Ceramer Materials from Sol-Gel Processing , 1990 .

[27]  G. Wilkes,et al.  Structure-property behavior of new hybrid materials incorporating oligomeric species into sol-gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane) , 1987 .

[28]  M. Nogami,et al.  Synthesis and Characterization of Proton Conducting Inorganic−Organic Hybrid Nanocomposite Membranes Based on mixed PWA-PMA-TEOS-GPTMS-H3PO4-APTES for H2/O2 Fuel Cells , 2009 .

[29]  Steve Greenbaum,et al.  New membranes based on ionic liquids for PEM fuel cells at elevated temperatures , 2008 .

[30]  T. Berning,et al.  Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes , 2007 .

[31]  Y. Aihara,et al.  Anhydrous proton-conducting electrolyte membranes based on hyperbranched polymer with phosphonic acid groups for high-temperature fuel cells , 2008 .

[32]  M. Nogami,et al.  Structural and Transport Properties of Mixed Phosphotungstic Acid/Phosphomolybdic Acid/SiO2 Glass Membranes for H2/O2 Fuel Cells , 2007 .

[33]  Qingfeng Li,et al.  Partially Fluorinated Arylene Polyethers and Their Ternary Blend Membranes with PBI and H3PO4. Part I. Synthesis and Characterisation of Polymers and Binary Blend Membranes , 2008 .

[34]  正行 野上,et al.  P2O5-SiO2-PMA 系ガラスを電解質にした H2/O2 燃料電池の低温動作特性 , 2006 .

[35]  Liming Tang,et al.  Studies on anhydrous proton conducting membranes based on imidazole derivatives and sulfonated polyimide , 2009 .

[36]  G. Schmidt-naake,et al.  Modification of Nafion Membranes by Impregnation with Ionic Liquids , 2008 .

[37]  M. Nogami,et al.  Synthesis and characterization of proton conducting inorganic―organic hybrid nanocomposite membranes based on tetraethoxysilane/trimethylphosphate/ 3-glycidoxypropyltrimethoxysilane/heteropoly acids , 2009 .

[38]  Wei Yuan,et al.  Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance , 2010 .

[39]  R. He,et al.  Preparation and characterization of new anhydrous, conducting membranes based on composites of ionic liquid trifluoroacetic propylamine and polymers of sulfonated poly (ether ether) ketone or polyvinylidenefluoride , 2008 .

[40]  M. Nogami,et al.  PMA/ZrO2―P2O5―SiO2 glass composite membranes: H2/O2 fuel cells , 2009 .

[41]  M. Nogami,et al.  Anhydrous Proton Conducting Inorganic–Organic Composite Membranes Based on Tetraethoxysilane/ Ethyl-Triethoxysilane/Trimethylphosphate and 1-Butyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide , 2010 .

[42]  R. Dominko,et al.  Electrochemical Behavior of Li2FeSiO4 with Ionic Liquids at Elevated Temperature , 2009 .

[43]  S. Katayama,et al.  Characterization and Mechanical Properties of Flexible Dimethylsiloxane‐Based Inorganic/Organic Hybrid Sheets , 2004 .

[44]  S. Çelik,et al.  Proton-conducting properties of the membranes based on poly(vinyl phosphonic acid) grafted poly(glycidyl methacrylate) , 2009 .

[45]  M. Nogami,et al.  Synthesis, characterization and electrochemical properties of SiO2–P2O5–TiO2–ZrO2 glass membranes as proton conducting electrolyte for low-temperature H2/O2 fuel cells , 2009 .

[46]  Ay Su,et al.  CFD investigating the effects of different operating conditions on the performance and the characteristics of a high-temperature PEMFC , 2010 .

[47]  A. Nakao,et al.  Characterization and electrochemical properties of P2O5–ZrO2–SiO2 glasses as proton conducting electrolyte , 2006 .