Extensions of the Poincare group

We construct an extension of the Poincare group which involves a mixture of internal and space-time supersymmetries. The resulting group is an extension of the superPoincare group with infinitely many generators which carry internal and space-time indices. It is a closed algebra since all Jacobi identities are satisfied and it has, therefore, explicit matrix representations. We investigate the massless case and construct the irreducible representations of the extended symmetry. They are divided into two sets, longitudinal and transversal representations. The transversal representations involve an infinite series of integer and half-integer helicities. Finally, we suggest an extension of the conformal group along the same line.

[1]  A. Sagnotti,et al.  String Lessons for Higher-Spin Interactions , 2010, 1006.5242.

[2]  Xm Fork Quantum Theory of Non-Local Fields . Part I . Free Fields , 2011 .

[3]  G. Savvidy EXTENSION OF THE POINCARÉ GROUP AND NON-ABELIAN TENSOR GAUGE FIELDS , 2010, 1006.3005.

[4]  G. Gibbons,et al.  Deforming the Maxwell-Sim algebra , 2009, 0910.3220.

[5]  I. Antoniadis,et al.  Scattering of charged tensor bosons in gauge and superstring theories , 2009, 0907.3553.

[6]  S. Bonanos,et al.  Infinite sequence of Poincaré group extensions: structure and dynamics , 2008, 0812.4140.

[7]  G. Savvidy Non-Abelian tensor gauge fields: Generalization of Yang–Mills theory , 2005, hep-th/0509049.

[8]  V. A. Soroka,et al.  Tensor extension of the Poincaré algebra , 2004, hep-th/0410012.

[9]  L. Brink,et al.  Continuous spin representations of the Poincaré and super-Poincaré groups , 2002, hep-th/0205145.

[10]  Sisir Roy Non-Local Fields , 1998 .

[11]  E. Wigner Invariant Quantum Mechanical Equations of Motion , 1997 .

[12]  E. Sokatchev,et al.  Gauge field geometry from complex and harmonic analyticities I. Kähler and self-dual Yang-Mills cases , 1988 .

[13]  L. Faddeev Operator anomaly for the gauss law , 1984 .

[14]  L. Brink,et al.  Cubic interaction terms for arbitrary spin , 1983 .

[15]  C. Frønsdal Massless Fields with Integer Spin , 1978 .

[16]  C. Frønsdal,et al.  Massless fields with half-integral spin , 1978 .

[17]  R. Haag,et al.  All possible generators of supersymmetries of the S-matrix , 1975 .

[18]  B. Zumino,et al.  Supergauge Transformations in Four-Dimensions , 1974 .

[19]  C. Hagen,et al.  Lagrangian formulation for arbitrary spin. I. The boson case , 1974 .

[20]  D. Volkov,et al.  Is the Neutrino a Goldstone Particle , 1973 .

[21]  A. Neveu,et al.  FACTORIZABLE DUAL MODEL OF PIONS. , 1971 .

[22]  P. Ramond Dual Theory for Free Fermions , 1971 .

[23]  Y. Golfand,et al.  EXTENSION OF THE ALGEBRA OF POINCARE GROUP GENERATORS AND VIOLATION OF P INVARIANCE. , 1971 .

[24]  S. Coleman,et al.  All Possible Symmetries of the S Matrix , 1967 .

[25]  R. Shaw,et al.  Unitary representations of the inhomogeneous Lorentz group , 1964 .

[26]  W. Pauli,et al.  On relativistic wave equations for particles of arbitrary spin in an electromagnetic field , 1939 .

[27]  Markus Fierz,et al.  Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin , 1939 .

[28]  W. Jadassohn,et al.  Zum Problem der Anaphylaxie mit chemisch bekannten Substanzen , 1939 .