Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI‐Earth system model

[1] MPI-ESM is a new version of the global Earth system model developed at the Max Planck Institute for Meteorology. This paper describes the ocean state and circulation as well as basic aspects of variability in simulations contributing to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The performance of the ocean/sea-ice model MPIOM, coupled to a new version of the atmosphere model ECHAM6 and modules for land surface and ocean biogeochemistry, is assessed for two model versions with different grid resolution in the ocean. The low-resolution configuration has a nominal resolution of 1.5°, whereas the higher resolution version features a quasiuniform, eddy-permitting global resolution of 0.4°. The paper focuses on important oceanic features, such as surface temperature and salinity, water mass distribution, large-scale circulation, and heat and freshwater transports. In general, these integral quantities are simulated well in comparison with observational estimates, and improvements in comparison with the predecessor system are documented; for example, for tropical variability and sea ice representation. Introducing an eddy-permitting grid configuration in the ocean leads to improvements, in particular, in the representation of interior water mass properties in the Atlantic and in the representation of important ocean currents, such as the Agulhas and Equatorial current systems. In general, however, there are more similarities than differences between the two grid configurations, and several shortcomings, known from earlier versions of the coupled model, prevail.

[1]  K. P.,et al.  HIGH RESOLUTION SCHEMES USING FLUX LIMITERS FOR HYPERBOLIC CONSERVATION LAWS * , 2012 .

[2]  S. Olsen,et al.  The Inflow of Atlantic Water, Heat, and Salt to the Nordic Seas Across the Greenland–Scotland Ridge , 2008 .

[3]  Thomas J. Weingartner,et al.  Interannual changes in the Bering Strait fluxes of volume, heat and freshwater between 1991 and 2004 , 2006 .

[4]  William E. Johns,et al.  Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N , 2007, Science.

[5]  David B. Stephenson,et al.  The “normality” of El Niño , 1999 .

[6]  E. Maier‐Reimer Design of a closed boundary regional model of the Arctic Ocean , 1997 .

[7]  D. Dommenget,et al.  El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks , 2010 .

[8]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[9]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[10]  James W. Hurrell,et al.  Decadal climate prediction: opportunities and challenges , 2010 .

[11]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[12]  Frank O. Bryan,et al.  Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: The western boundary current system , 2007 .

[13]  J. Toole,et al.  Volume transport and property distributions of the Mozambique Channel , 2002 .

[14]  S. Bates,et al.  The CCSM4 Ocean Component , 2012 .

[15]  Heinrich Widmann,et al.  Climate and carbon-cycle variability over the last millennium , 2010 .

[16]  Characterization of the multiple equilibria regime in a global ocean model , 2007 .

[17]  C. Wunsch,et al.  Large-Scale Ocean Heat and Freshwater Transports during the World Ocean Circulation Experiment , 2003 .

[18]  Yan Zhao,et al.  Evaluation of climate models using palaeoclimatic data , 2012 .

[19]  Mojib Latif,et al.  The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates , 2003 .

[20]  R. Käse,et al.  Interannual changes in the overflow from the Nordic Seas into the Atlantic Ocean through Denmark Strait , 2005 .

[21]  G. Vecchi,et al.  Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model , 2012 .

[22]  E. Roeckner,et al.  Impact of melt ponds on Arctic sea ice in past and future climates as simulated by MPI‐ESM , 2012 .

[23]  Kathleen A. Donohue,et al.  The Kuroshio Extension and its recirculation gyres , 2009 .

[24]  J. Klinck,et al.  The physics of the Antarctic Circumpolar Current , 1986 .

[25]  Ed Hawkins,et al.  Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport , 2011 .

[26]  Michael Botzet,et al.  Reconstructing, Monitoring, and Predicting Multidecadal-Scale Changes in the North Atlantic Thermohaline Circulation with Sea Surface Temperature , 2004 .

[27]  Arnold L. Gordon,et al.  Interocean Exchange of Thermocline Water , 1986 .

[28]  A. Biastoch,et al.  Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies , 2009, Nature.

[29]  Ross J. Murray,et al.  Explicit Generation of Orthogonal Grids for Ocean Models , 1996 .

[30]  Mojib Latif,et al.  Formation and propagation of great salinity anomalies , 2003 .

[31]  S. Speich,et al.  Atlantic meridional overturning circulation and the Southern Hemisphere supergyre , 2007 .

[32]  A. Biastoch,et al.  Mesoscale perturbations control inter‐ocean exchange south of Africa , 2008 .

[33]  R. Clarke,et al.  Hydrography of the Labrador Sea during Active Convection , 2002 .

[34]  Ron Lindsay,et al.  Assimilation of Ice Concentration in an Ice–Ocean Model , 2006 .

[35]  Michael Steele,et al.  PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean , 2001 .

[36]  M. Latif,et al.  A multimodel comparison of centennial Atlantic meridional overturning circulation variability , 2012, Climate Dynamics.

[37]  Alexander Loew,et al.  Combined evaluation of MPI‐ESM land surface water and energy fluxes , 2012 .

[38]  I. Kang,et al.  El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies , 2002 .

[39]  W. Johns,et al.  Gulf Stream structure, transport, and recirculation near 68°W , 1995 .

[40]  L. Stramma,et al.  Upper-level circulation in the South Atlantic Ocean , 1991 .

[41]  Ron Kwok,et al.  Uncertainty in modeled Arctic sea ice volume , 2011 .

[42]  H. Douville,et al.  The CNRM-CM5.1 global climate model: description and basic evaluation , 2013, Climate Dynamics.

[43]  Peter A. Rochford,et al.  Mixed layer depth variability over the global ocean , 2003 .

[44]  J. Marotzke,et al.  Present-Day Arctic Sea Ice Variability in the Coupled ECHAM5/MPI-OM Model , 2010 .

[45]  S. Drijfhout,et al.  An Indicator of the Multiple Equilibria Regime of the Atlantic Meridional Overturning Circulation , 2010 .

[46]  Gokhan Danabasoglu,et al.  Attribution and Impacts of Upper-Ocean Biases in CCSM3 , 2006 .

[47]  J. Jungclaus,et al.  Effect of ice sheet interactions in anthropogenic climate change simulations , 2007 .

[48]  Stephen M. Griffies,et al.  Spurious Diapycnal Mixing Associated with Advection in a z-Coordinate Ocean Model , 2000 .

[49]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[50]  A. Gordon,et al.  The Indonesian throughflow during 2004–2006 as observed by the INSTANT program , 2010 .

[51]  S. Wijffels Freshwater Transport And Climate , 2001 .

[52]  R. Dickson,et al.  The production of North Atlantic Deep Water: Sources, rates, and pathways , 1994 .

[53]  S. Rahmstorf On the freshwater forcing and transport of the Atlantic thermohaline circulation , 1996 .

[54]  J. Carton,et al.  A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA) , 2008 .

[55]  D. Enfield,et al.  What caused the significant increase in Atlantic Ocean heat content since the mid‐20th century? , 2011 .

[56]  Hongmei Li,et al.  Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI‐Earth system model in different CMIP5 experimental realizations , 2013 .

[57]  Johann R. E. Lutjeharms,et al.  The Retroflection of the Agulhas Current , 1988 .

[58]  Arnold L. Gordon,et al.  Deep Antarctic Convection West of Maud Rise , 1978 .

[59]  H. Bryden,et al.  South Atlantic overturning circulation at 24°S , 2011 .

[60]  J. Marotzke,et al.  Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N , 2007, Science.

[61]  W. Müller,et al.  Stratosphere‐troposphere coupling at inter‐decadal time scales: Implications for the North Atlantic Ocean , 2012 .

[62]  J. Carton,et al.  Tropical Atlantic Biases in CCSM4 , 2012 .

[63]  J. Jungclaus,et al.  Modelling the Overflows Across the Greenland–Scotland Ridge , 2008 .

[64]  E. Guilyardi,et al.  A first look at ENSO in CMIP5 , 2012 .

[65]  Frank O. Bryan,et al.  What sets the mean transport through Drake Passage , 2001 .

[66]  Alexander Loew,et al.  Evaluation of vegetation cover and land‐surface albedo in MPI‐ESM CMIP5 simulations , 2013 .

[67]  H. Ichikawa,et al.  Satellite altimeter monitoring the Kuroshio Transport south of Japan , 2001 .

[68]  G. Williams,et al.  Modeling water mass formation in the Mertz Glacier Polynya and Adélie Depression, East Antarctica , 2004 .

[69]  P. Gent,et al.  Parameterizing eddy-induced tracer transports in ocean circulation models , 1995 .

[70]  Gregory C. Johnson,et al.  Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s , 2002 .

[71]  T. Delworth,et al.  The Role of Mesoscale Eddies in the Remote Oceanic Response to Altered Southern Hemisphere Winds , 2010 .

[72]  M. Redi Oceanic Isopycnal Mixing by Coordinate Rotation , 1982 .

[73]  S. Levitus,et al.  World ocean atlas 2009 , 2010 .

[74]  Gokhan Danabasoglu,et al.  Climate impacts of parameterized Nordic Sea overflows , 2010 .

[75]  Kevin E. Trenberth,et al.  The Annual Cycle of the Energy Budget. Part II: Meridional Structures and Poleward Transports , 2008 .

[76]  S. Weber,et al.  The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation , 2005 .

[77]  S. Drijfhout,et al.  The stability of the THC as diagnosed from model projections for present , past and future climates , 2010 .

[78]  R. Pacanowski,et al.  Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans , 1981 .

[79]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[80]  A. Sterl,et al.  A look at the ocean in the EC-Earth climate model , 2012, Climate Dynamics.

[81]  John F. B. Mitchell,et al.  Simulated climate and CO2—Induced climate change over Western Europe , 1987 .

[82]  Paul E. Robbins,et al.  Data-Based Meridional Overturning Streamfunctions for the Global Ocean , 2003 .

[83]  V. Brovkin,et al.  Representation of natural and anthropogenic land cover change in MPI‐ESM , 2013 .

[84]  A. Biastoch,et al.  Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble , 2013, Climate Dynamics.

[85]  D. Klocke,et al.  Tuning the climate of a global model , 2012 .

[86]  Jochem Marotzke,et al.  Arctic sea‐ice evolution as modeled by Max Planck Institute for Meteorology's Earth system model , 2013 .

[87]  Kevin E. Trenberth,et al.  An Observational Estimate of Inferred Ocean Energy Divergence , 2008 .

[88]  Frank O. Bryan,et al.  Coordinated Ocean-ice Reference Experiments (COREs) , 2009 .

[89]  M. Brandon,et al.  Transport and variability of the Antarctic Circumpolar Current in Drake Passage , 2003 .

[90]  B. Stevens,et al.  The Atmospheric Component of the MPI-M Earth 1 System Model : ECHAM 6 2 , 2012 .

[91]  Andrei P. Sokolov,et al.  Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes , 2006 .

[92]  Molly O. Baringer,et al.  Outflows and deep water production by marginal seas , 1994 .

[93]  E. Maier‐Reimer,et al.  The Hamburg Ocean primitive equation model - HOPE , 1996 .

[94]  Harry L. Bryden,et al.  Estimation of the transports through the Strait of Gibraltar , 2000 .

[95]  Michael Botzet,et al.  Ocean Circulation and Tropical Variability in the Coupled Model ECHAM5/MPI-OM , 2006 .

[96]  Johanna Baehr,et al.  Multiyear Prediction of Monthly Mean Atlantic Meridional Overturning Circulation at 26.5°N , 2012, Science.

[97]  H. Dijkstra Characterization of the multiple equilibria regime in a global ocean model , 2007 .

[98]  L. Beal,et al.  On the role of the Agulhas system in ocean circulation and climate , 2011, Nature.

[99]  Andrew,et al.  The GFDL CM3 Coupled Climate Model: Characteristics of the Ocean and Sea Ice Simulations , 2011 .

[100]  William E. Johns,et al.  Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport at 26.5°N , 2011 .