Rainbow trout USP4 downregulates LPS-induced inflammation by removing the K63-linked ubiquitin chain on TAK1.

[1]  Minhu Chen,et al.  Ubiquitin-specific proteases in inflammatory bowel disease-related signalling pathway regulation , 2022, Cell Death & Disease.

[2]  Xiaohong Huang,et al.  Grouper USP12 exerts antiviral activity against nodavirus infection. , 2022, Fish & shellfish immunology.

[3]  J. Cho,et al.  A20 Inhibits LPS-Induced Inflammation by Regulating TRAF6 Polyubiquitination in Rainbow Trout , 2021, International journal of molecular sciences.

[4]  Xiaohong Huang,et al.  Grouper ubiquitin-specific protease 14 promotes iridovirus replication through negatively regulating interferon response. , 2020, Fish & shellfish immunology.

[5]  Jiahuai Han,et al.  The p38‐interacting protein p38IP suppresses TCR and LPS signaling by targeting TAK1 , 2020, EMBO reports.

[6]  Yuanan Lu,et al.  Zebrafish ubiquitin-specific peptidase 5 (USP5) activates interferon resistance to the virus by increase the expression of RIG-I. , 2020, Gene.

[7]  K. Jia,et al.  Ubiquitin-specific protease 5 was involved in the interferon response to RGNNV in sea perch (Lateolabrax japonicus). , 2020, Fish & shellfish immunology.

[8]  Hyang-Mi Lee,et al.  Molecular cloning and functional analysis of deubiquitinase CYLD in rainbow trout, Oncorhynchus mykiss. , 2020, Fish & shellfish immunology.

[9]  J. Cho,et al.  Molecular cloning and functional characterization of TRAF6 and TAK1 in rainbow trout, Oncorhynchus mykiss. , 2019, Fish & shellfish immunology.

[10]  Nobuhiro Nakamura,et al.  Ubiquitin System , 2018, International journal of molecular sciences.

[11]  D. Komander,et al.  Mechanisms of Deubiquitinase Specificity and Regulation. , 2017, Annual review of biochemistry.

[12]  J. Cho,et al.  PGRP negatively regulates NOD-mediated cytokine production in rainbow trout liver cells , 2016, Scientific Reports.

[13]  David Komander,et al.  Ubiquitin modifications , 2016, Cell Research.

[14]  X. Xia,et al.  Selection preserves Ubiquitin Specific Protease 4 alternative exon skipping in therian mammals , 2016, Scientific Reports.

[15]  Yi-Bing Zhang,et al.  Expression characterization, genomic structure and function analysis of fish ubiquitin-specific protease 18 (USP18) genes. , 2015, Developmental and comparative immunology.

[16]  V. Saridakis,et al.  Deubiquitinases and the new therapeutic opportunities offered to cancer , 2015, Endocrine-related cancer.

[17]  Helen Y Wang,et al.  Cell type-specific function of TAK1 in innate immune signaling. , 2013, Trends in immunology.

[18]  Xin-yu Liu,et al.  TAK1, more than just innate immunity , 2012, IUBMB life.

[19]  Jian Luo,et al.  Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFα-induced cancer cell migration. , 2012, The Biochemical journal.

[20]  H. van Dam,et al.  Ubiquitin-specific Protease 4 Mitigates Toll-like/Interleukin-1 Receptor Signaling and Regulates Innate Immune Activation* , 2012, The Journal of Biological Chemistry.

[21]  Y. Palti Toll-like receptors in bony fish: from genomics to function. , 2011, Developmental and comparative immunology.

[22]  Songbin Fu,et al.  USP4 targets TAK1 to downregulate TNFα-induced NF-κB activation , 2011, Cell Death and Differentiation.

[23]  J. Qin,et al.  Lysine 63-linked Polyubiquitination of TAK1 at Lysine 158 Is Required for Tumor Necrosis Factor α- and Interleukin-1β-induced IKK/NF-κB and JNK/AP-1 Activation* , 2009, The Journal of Biological Chemistry.

[24]  K. Hofmann,et al.  Dissection of USP catalytic domains reveals five common insertion points. , 2009, Molecular bioSystems.

[25]  S. Akira,et al.  Two Mechanistically and Temporally Distinct NF-κB Activation Pathways in IL-1 Signaling , 2009, Science Signaling.

[26]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[27]  Shao-Cong Sun Deubiquitylation and regulation of the immune response , 2008, Nature Reviews Immunology.

[28]  Zhijian J. Chen,et al.  Ubiquitin-mediated activation of TAK1 and IKK , 2007, Oncogene.

[29]  René Bernards,et al.  A Genomic and Functional Inventory of Deubiquitinating Enzymes , 2005, Cell.

[30]  Ki-Young Lee,et al.  TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. , 2005, Genes & development.

[31]  J. Ashwell,et al.  TNF‐α induced c‐IAP1/TRAF2 complex translocation to a Ubc6‐containing compartment and TRAF2 ubiquitination , 2005, The EMBO journal.

[32]  Carol Kim,et al.  Functional characterization of full-length TLR3, IRAK-4, and TRAF6 in zebrafish (Danio rerio). , 2005, Molecular immunology.

[33]  K. Triantafilou,et al.  The dynamics of LPS recognition: complex orchestration of multiple receptors , 2005 .

[34]  Zhijian J. Chen,et al.  Activation of the IκB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain , 2000, Cell.

[35]  R. Baker,et al.  Characterization of the ubiquitin-specific protease activity of the mouse/human Unp/Unph oncoprotein. , 2000, Biochimica et Biophysica Acta.

[36]  M. Rolfe,et al.  The human UNP locus at 3p21.31 encodes two tissue-selective, cytoplasmic isoforms with deubiquitinating activity that have reduced expression in small cell lung carcinoma cell lines , 1998, Oncogene.

[37]  R. Baker,et al.  A Ubiquitin-specific Protease That Efficiently Cleaves the Ubiquitin-Proline Bond* , 1997, The Journal of Biological Chemistry.

[38]  R. Ueda,et al.  Elevated expression of Unph, a proto-oncogene at 3p21.3, in human lung tumors. , 1995, Oncogene.

[39]  N. Copeland,et al.  Unp, a mouse gene related to the tre oncogene. , 1993, Oncogene.