How do degenerate mobilities determine singularity formation in Cahn-Hilliard equations?

Cahn-Hilliard models are central for describing the evolution of interfaces in phase separation processes and free boundary problems. In general, they have non-constant and often degenerate mobilities. However, in the latter case, the spontaneous appearance of points of vanishing mobility and their impact on the solution are not well understood. In this paper we develop a singular perturbation theory to identify a range of degeneracies for which the solution of the Cahn-Hilliard equation forms a singularity in infinite time. This analysis forms the basis for a rigorous sharp interface theory and enables the systematic development of robust numerical methods for this family of model equations.

[1]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[2]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[3]  Piotr Rybka,et al.  Convergence of solutions to cahn-hilliard equation , 1999 .

[4]  Andrew J. Bernoff,et al.  Dynamics of three-dimensional thin film rupture , 2000 .

[5]  D. R. Lloyd,et al.  Kinetics of droplet growth in liquid-liquid phase separation of polymer-diluent systems : experimental results , 1995 .

[6]  Symmetry and self-similarity in rupture and pinchoff: a geometric bifurcation , 2001, European Journal of Applied Mathematics.

[7]  Alpha A Lee,et al.  Degenerate mobilities in phase field models are insufficient to capture surface diffusion , 2015, 1505.06381.

[8]  Chang Shu,et al.  Diffuse interface model for incompressible two-phase flows with large density ratios , 2007, J. Comput. Phys..

[9]  Ashish Kumar,et al.  Diffuse interface model for electromigration and stress voiding , 2000 .

[10]  J. King Emerging areas of mathematical modelling , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Helmut Abels,et al.  Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy , 2007 .

[12]  Charles M. Elliott,et al.  The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature , 1996, European Journal of Applied Mathematics.

[13]  John W. Barrett,et al.  Finite Element Approximation of a Phase Field Model for Void Electromigration , 2004, SIAM J. Numer. Anal..

[14]  Karl B Glasner,et al.  A diffuse interface approach to Hele-Shaw flow , 2003 .

[15]  B. Niethammer Existence and uniqueness of radially symmetric stationary points within the gradient theory of phase transitions , 1995, European Journal of Applied Mathematics.

[16]  Thomas P. Witelski,et al.  Finite-time thin film rupture driven by modified evaporative loss , 2016, 1601.03625.

[17]  Qiang Du,et al.  Motion of Interfaces Governed by the Cahn-Hilliard Equation with Highly Disparate Diffusion Mobility , 2012, SIAM J. Appl. Math..

[18]  J. Taylor,et al.  Overview no. 113 surface motion by surface diffusion , 1994 .

[19]  John W. Cahn,et al.  Linking anisotropic sharp and diffuse surface motion laws via gradient flows , 1994 .

[20]  Martin Rumpf,et al.  Nonnegativity preserving convergent schemes for the thin film equation , 2000, Numerische Mathematik.

[21]  Axel Voigt,et al.  Comment on “Degenerate mobilities in phase field models are insufficient to capture surface diffusion” [Appl. Phys. Lett. 107, 081603 (2015)] , 2016 .

[22]  L. M. Hocking THE SPREADING OF A THIN DROP BY GRAVITY AND CAPILLARITY , 1983 .

[23]  Axel Voigt,et al.  A new phase-field model for strongly anisotropic systems , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  R. M. Bradley,et al.  Phase field model of surface electromigration in single crystal metal thin films , 1999 .

[25]  M. Bertsch,et al.  Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation , 1995 .

[26]  P. Constantin,et al.  On Singularity Formation in a Hele-Shaw Model , 2017, Communications in Mathematical Physics.

[27]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[28]  John R. Lister,et al.  Rupture of thin viscous films by van der Waals forces: Evolution and self-similarity , 2001 .

[29]  Andrea L. Bertozzi,et al.  Stable and unstable singularities in the unforced Hele‐Shaw cell , 1996 .

[30]  Gunton,et al.  Domain growth and scaling in the two-dimensional Langevin model. , 1989, Physical review. B, Condensed matter.

[31]  John W. Cahn,et al.  Phase Separation by Spinodal Decomposition in Isotropic Systems , 1965 .

[32]  Hsiang-Wei Lu,et al.  A diffuse-interface model for electrowetting drops in a Hele-Shaw cell , 2005, Journal of Fluid Mechanics.

[33]  Shibin Dai,et al.  Weak Solutions for the Cahn–Hilliard Equation with Degenerate Mobility , 2016 .

[34]  Qiang Du,et al.  Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility , 2016, J. Comput. Phys..

[35]  Kadanoff,et al.  Traveling-wave solutions to thin-film equations. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Andrea L. Bertozzi,et al.  Singularities and similarities in interface flows , 1994 .

[37]  The thin film equation with backwards second order diffusion , 2010, 1010.0536.

[38]  A. Münch,et al.  Numerical and asymptotic results on the linear stability of a thin film spreading down a slope of small inclination , 1999, European Journal of Applied Mathematics.

[39]  Endre Süli,et al.  Sharp-Interface Limits of the Cahn-Hilliard Equation with Degenerate Mobility , 2015, SIAM J. Appl. Math..

[40]  A. Lacey,et al.  The Motion with Slip of a Thin Viscous Droplet over a Solid Surface , 1982 .

[41]  Harald Garcke,et al.  A phase field model for the electromigration of intergranular voids , 2007 .

[42]  P. Gennes Dynamics of fluctuations and spinodal decomposition in polymer blends , 1980 .

[43]  On the mechanism of pinning in phase-separating polymer blends , 1995, cond-mat/9508122.

[44]  A. Friedman,et al.  Higher order nonlinear degenerate parabolic equations , 1990 .

[45]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[46]  Mary C. Pugh,et al.  Long-wave instabilities and saturation in thin film equations , 1998 .

[47]  Serafim Kalliadasis,et al.  Unifying binary fluid diffuse-interface models in the sharp-interface limit , 2013, Journal of Fluid Mechanics.

[48]  H. Abels,et al.  Thermodynamically Consistent, Frame Indifferent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities , 2011, 1104.1336.

[49]  B. Niethammer,et al.  Self-similar rupture of viscous thin films in the strong-slip regime , 2010 .

[50]  G. Barkema,et al.  Phase separation driven by surface diffusion: a Monte Carlo study. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[52]  J. King,et al.  Moving boundary problems and non-uniqueness for the thin film equation , 2001, European Journal of Applied Mathematics.

[53]  J. Oden,et al.  Selection and Validation of Predictive Models of Radiation Effects on Tumor Growth Based on Noninvasive Imaging Data. , 2017, Computer methods in applied mechanics and engineering.

[54]  A. Bertozzi THE MATHEMATICS OF MOVING CONTACT LINES IN THIN LIQUID FILMS , 1998 .

[55]  Constantin,et al.  Droplet breakup in a model of the Hele-Shaw cell. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  V. Galaktionov Very Singular Solutions for Thin Film Equations with Absorption , 2010 .

[57]  Andreas Münch,et al.  An anisotropic phase-field model for solid-state dewetting and its sharp-interface limit , 2017 .

[58]  B. Niethammer,et al.  Thin-film rupture for large slip , 2010 .

[59]  J. E. Hilliard,et al.  Spinodal decomposition: A reprise , 1971 .

[60]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[61]  A. Münch,et al.  Localized instabilities and spinodal decomposition in driven systems in the presence of elasticity. , 2017, Physical review. E.

[62]  Franck Boyer,et al.  Study of a three component Cahn-Hilliard flow model , 2006 .

[63]  H. P. Greenspan,et al.  On the motion of a small viscous droplet that wets a surface , 1978, Journal of Fluid Mechanics.

[64]  John Lowengrub,et al.  Simulating interfacial anisotropy in thin-film growth using an extended Cahn-Hilliard model. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Desai,et al.  Numerical study of the late stages of spinodal decomposition. , 1988, Physical review. B, Condensed matter.

[66]  Axel Voigt,et al.  Surface evolution of elastically stressed films under deposition by a diffuse interface model , 2006, J. Comput. Phys..

[67]  G. I. Barenblatt,et al.  The problem of the spreading of a liquid film along a solid surface: a new mathematical formulation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Lorenzo Giacomelli,et al.  Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility , 1999 .

[69]  Andrea L. Bertozzi,et al.  THE LUBRICATION APPROXIMATION FOR THIN VISCOUS FILMS: THE MOVING CONTACT LINE WITH A 'POROUS MEDIA' CUT OFF OF VAN DER WAALS INTERACTIONS , 1994 .

[70]  Qiang Du,et al.  Coarsening Mechanism for Systems Governed by the Cahn-Hilliard Equation with Degenerate Diffusion Mobility , 2014, Multiscale Model. Simul..

[71]  Andrea L. Bertozzi,et al.  Symmetric Singularity Formation in Lubrication-Type Equations for Interface Motion , 1996, SIAM J. Appl. Math..

[72]  Yusheng Feng,et al.  Toward Predictive Multiscale Modeling of Vascular Tumor Growth , 2015, Archives of Computational Methods in Engineering.

[73]  Andrea L. Bertozzi,et al.  Positivity-Preserving Numerical Schemes for Lubrication-Type Equations , 1999, SIAM J. Numer. Anal..

[74]  Stefan Turek,et al.  Isogeometric Analysis of the Navier-Stokes-Cahn-Hilliard equations with application to incompressible two-phase flows , 2017, J. Comput. Phys..

[75]  Thomas Erneux,et al.  Nonlinear rupture of free films , 1993 .

[76]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[77]  Xiangrong Li,et al.  Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching , 2009, Journal of mathematical biology.