Metaheuristic Algorithm for Photovoltaic Parameters: Comparative Study and Prediction with a Firefly Algorithm

In this paper, a Firefly algorithm is proposed for identification and comparative study of five, seven and eight parameters of a single and double diode solar cell and photovoltaic module under different solar irradiation and temperature. Further, a metaheuristic algorithm is proposed in order to predict the electrical parameters of three different solar cell technologies. The first is a commercial RTC mono-crystalline silicon solar cell with single and double diodes at 33 °C and 1000 W/m2. The second, is a flexible hydrogenated amorphous silicon a-Si:H solar cell single diode. The third is a commercial photovoltaic module (Photowatt-PWP 201) in which 36 polycrystalline silicon cells are connected in series, single diode, at 25 °C and 1000 W/m2 from experimental current-voltage. The proposed constrained objective function is adapted to minimize the absolute errors between experimental and predicted values of voltage and current in two zones. Finally, for performance validation, the parameters obtained through the Firefly algorithm are compared with recent research papers reporting metaheuristic optimization algorithms and analytical methods. The presented results confirm the validity and reliability of the Firefly algorithm in extracting the optimal parameters of the photovoltaic solar cell.

[1]  B. Lustermann,et al.  Behaviour of amorphous silicon solar modules: A parameter study , 2013 .

[2]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[3]  Shu-xian Lun,et al.  A new explicit I–V model of a solar cell based on Taylor’s series expansion , 2013 .

[4]  J. Merten,et al.  Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules , 1998 .

[5]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[6]  Giuseppina Ciulla,et al.  An improved five-parameter model for photovoltaic modules , 2010 .

[7]  Xin-She Yang,et al.  Nature-Inspired Algorithms and Applied Optimization , 2018 .

[8]  S. Karmalkar,et al.  A Physically Based Explicit $J$ – $V$ Model of a Solar Cell for Simple Design Calculations , 2008, IEEE Electron Device Letters.

[9]  Viorel Badescu,et al.  A simple but accurate procedure for solving the five-parameter model , 2015 .

[10]  Jean-Pierre Corriou,et al.  Optimization of the dynamic behavior of a solar distillation cell by Model Predictive Control , 2011 .

[11]  Hooman Mohseni,et al.  Universality of non-ohmic shunt leakage in thin-film solar cells , 2010 .

[12]  Leandro dos Santos Coelho,et al.  Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach , 2015 .

[13]  Xin-She Yang,et al.  Why the Firefly Algorithm Works? , 2018, ArXiv.

[14]  S. Sen,et al.  Opportunities, barriers and issues with renewable energy development – A discussion , 2017 .

[15]  J. Merten,et al.  Clear separation of seasonal effects on the performance of amorphous silicon solar modules by outdoor I/ V-measurements 1 This work has been financed by the project JOU2-CT92-5103 of the EU. 1 , 1998 .

[16]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[17]  Yongchang Yu,et al.  Lambert W-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction , 2016 .

[18]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[19]  J. Jervase,et al.  Solar cell parameter extraction using genetic algorithms , 2001 .

[20]  Xin-She Yang,et al.  Engineering Optimization: An Introduction with Metaheuristic Applications , 2010 .

[21]  A. Das An explicit J–V model of a solar cell for simple fill factor calculation , 2011 .

[22]  Elsayed I. Morgan,et al.  An integrated review of factors influencing the perfomance of photovoltaic panels , 2017 .

[23]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[24]  Amanda D. Smith,et al.  fEvaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector , 2017 .

[25]  Kay Soon Low,et al.  Optimizing Photovoltaic Model for Different Cell Technologies Using a Generalized Multidimension Diode Model , 2015, IEEE Transactions on Industrial Electronics.

[26]  Nasrudin Abd Rahim,et al.  Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization , 2016 .

[27]  Javier Cubas,et al.  Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function , 2014 .

[28]  Hassan Fathabadi,et al.  Novel neural-analytical method for determining silicon/plastic solar cells and modules characteristics , 2013 .

[29]  Fanny Sculati-Meillaud,et al.  Diagnostics of thin-film silicon solar cells and solar panels/modules with variable intensity measurements (VIM) , 2011 .

[30]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[31]  Ioana Pintilie,et al.  Dynamic electrical behavior of halide perovskite based solar cells , 2016, 1606.00335.

[32]  Jiangjian Xie,et al.  Modeling method research of flexible amorphous silicon solar cell , 2015 .

[33]  Yuqing He,et al.  Parameter extraction of solar cell models using chaotic asexual reproduction optimization , 2014, Neural Computing and Applications.

[34]  Shuichi Nonomura,et al.  Determination of the Built-in Potential in a-Si Solar Cells by Means of Electroabsorption Method , 1982 .

[35]  Sonia Leva,et al.  Physical and hybrid methods comparison for the day ahead PV output power forecast , 2017 .

[36]  Attia A. El-Fergany Efficient Tool to Characterize Photovoltaic Generating Systems Using Mine Blast Algorithm , 2015 .

[37]  Shu-xian Lun,et al.  A new explicit I–V model of a silicon solar cell based on Chebyshev Polynomials , 2015 .

[38]  M. Louzazni,et al.  An analytical mathematical modeling to extract the parameters of solar cell from implicit equation to explicit form , 2015 .

[39]  N. Tong,et al.  A parameter extraction technique exploiting intrinsic properties of solar cells , 2016 .

[40]  Daniel T. Cotfas,et al.  Methods and techniques to determine the dynamic parameters of solar cells: Review , 2016 .

[41]  Javier Cubas,et al.  Simple mathematical approach to solar cell/panel behavior based on datasheet information , 2017 .

[42]  A. Dolara,et al.  Comparison of different physical models for PV power output prediction , 2015 .

[43]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[44]  Mohd Amran Mohd Radzi,et al.  Power loss due to soiling on solar panel: A review , 2016 .

[45]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[46]  Chao Huang,et al.  A novel Elite Opposition-based Jaya algorithm for parameter estimation of photovoltaic cell models , 2018 .

[47]  A. Massi Pavan,et al.  Explicit empirical model for general photovoltaic devices: Experimental validation at maximum power point , 2014 .

[48]  Marco Mussetta,et al.  Comparative prediction of single and double diode parameters for solar cell models with firefly algorithm , 2017, 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE).

[49]  N. Boutana,et al.  Assessment of implicit and explicit models for different photovoltaic modules technologies , 2017 .

[50]  Y. Hishikawa,et al.  Modeling of the I–V curves of the PV modules using linear interpolation/extrapolation , 2009 .

[51]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[52]  J. Hubin,et al.  Effect of the recombination function on the collection in a p-i-n solar cell , 1995 .

[53]  Meiying Ye,et al.  Parameter extraction of solar cells using particle swarm optimization , 2009 .

[54]  Zhen Ye,et al.  A linear method to extract diode model parameters of solar panels from a single I–V curve , 2015 .

[55]  Q. Niu,et al.  A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells , 2014 .

[56]  N. Boutana,et al.  An explicit I-V model for photovoltaic module technologies , 2017 .

[57]  Francesco Grimaccia,et al.  ANN Sizing Procedure for the Day-Ahead Output Power Forecast of a PV Plant , 2017 .

[58]  F. B. Pelap,et al.  Optimization of the characteristics of the PV cells using nonlinear electronic components , 2016 .

[59]  Ding Kun,et al.  A simplified model for photovoltaic modules based on improved translation equations , 2014 .

[60]  Hui Du,et al.  A Linear Identification of Diode Models from Single I-V Characteristics of PV Panels , 2015, IEEE Trans. Ind. Electron..

[61]  Iztok Fister,et al.  A comprehensive review of firefly algorithms , 2013, Swarm Evol. Comput..

[62]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[63]  Yifeng Chen,et al.  Parameters extraction from commercial solar cells I-V characteristics and shunt analysis , 2011 .

[64]  Y. Errami,et al.  Parameter estimation of photovoltaic modules using iterative method and the Lambert W function: A comparative study , 2016 .

[65]  Xin-She Yang,et al.  Multiobjective firefly algorithm for continuous optimization , 2012, Engineering with Computers.

[66]  Alexandru Dumitrache,et al.  Identification of Solar Cell Parameters with Firefly Algorithm , 2015, 2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI).

[67]  Zhuo Meng,et al.  An improved model and parameters extraction for photovoltaic cells using only three state points at standard test condition , 2014 .

[68]  J. Phillips,et al.  A comparative study of extraction methods for solar cell model parameters , 1986 .

[69]  F. Dkhichi,et al.  Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing , 2014 .

[70]  S. K. Parida,et al.  An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint , 2016 .

[71]  Yunpeng Zhang,et al.  Prediction of I-V characteristics for a PV panel by combining single diode model and explicit analytical model , 2017 .

[72]  E. Karatepe,et al.  Development of a suitable model for characterizing photovoltaic arrays with shaded solar cells , 2007 .

[73]  G. Farahani,et al.  A novel approximate explicit double-diode model of solar cells for use in simulation studies , 2017 .

[74]  Shuxian Lun,et al.  A new explicit double-diode modeling method based on Lambert W-function for photovoltaic arrays , 2015 .

[75]  Francesco Grimaccia,et al.  Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power , 2017, Math. Comput. Simul..

[76]  Shu-xian Lun,et al.  An improved explicit I–V model of a solar cell based on symbolic function and manufacturer’s datasheet , 2014 .

[77]  Shu-xian Lun,et al.  An explicit approximate I–V characteristic model of a solar cell based on padé approximants , 2013 .

[78]  Souvik Mahapatra,et al.  On the Nature of Shunt Leakage in Amorphous Silicon p-i-n Solar Cells , 2010, IEEE Electron Device Letters.

[79]  A. Das Analytical derivation of explicit J–V model of a solar cell from physics based implicit model , 2012 .