Denoising of MEMS Vector Hydrophone Signal Based on Empirical Model Wavelet Method

Underwater acoustic technology is a major method in current ocean research and exploration, which support the detection of seabed environment and marine life. However, the detection accuracy is directly affected by the quality of underwater acoustic signals collected by hydrophones. Hydrophones are efficient and important tools for collecting underwater acoustic signals. The collected signals of hydrophone often contain lots kinds of noise as the work environment is unknown and complex. Traditional signal denoising methods, such as wavelet analysis and empirical mode decomposition, product unsatisfied results of denoising. In this paper, a denoising method combining wavelet threshold processing and empirical mode decomposition is proposed, and correlation analysis is added in the signal reconstruction process. Finally, the experiment proves that the proposed denoising method has a better denoising performance. With the employment of the proposed method, the underwater acoustic signals turn smoothly and the signal drift of the collected hydroacoustic signal is improved. Comparing the signal spectrums of other methods, the spectral energy of the proposed denoising method is more concentrated, and almost no energy attenuation occurred.