SEMM-2: A new generation of single-event-effect modeling tools

The IBM soft-error Monte Carlo model SEMM-2 is a new general-purpose simulation platform developed for single-event-effect (SEE) analysis of advanced CMOS (complementary metal-oxide semiconductor) technologies. The current status and major features of this system are presented in this paper, including the physics model modules for the relevant atomic and nuclear processes, the construction and application of databases, and the simulation methodologies used to solve general transport problems. SEE analysis can be carried out for a large class of radiation subatomic particles in arbitrarily complex geometries and material composition of the integrated circuit designs.

[1]  G. R. Srinivasan,et al.  A microscopic model of energy deposition in silicon slabs exposed to high-energy protons , 1987 .

[2]  Nils Olsson,et al.  Measurements of Neutron-Induced Fission Cross-Sections for 209Bi, natPb, 208Pb, 197Au, natW, and 181Ta in the Intermediate Energy Region , 2004 .

[3]  Kenneth P. Rodbell,et al.  Single-Event Upsets in Microelectronics: Fundamental Physics and Issues , 2003 .

[4]  Tang,et al.  Cascade statistical model for nucleon-induced reactions on light nuclei in the energy range 50 MeV-1 GeV. , 1990, Physical review. C, Nuclear physics.

[5]  J. L. Romero,et al.  Hadron-induced reactions: From basic research to new technological applications , 1997 .

[6]  R. F. Carlson,et al.  Proton-Nucleus Total Reaction Cross Sections and Total Cross Sections Up to 1 GeV , 1996 .

[7]  R. J. Peterson,et al.  Pion production of heavily ionizing particles from aluminum , 2002 .

[8]  H.H.K. Tang,et al.  Low-Energy Proton-Induced Single-Event-Upsets in 65 nm Node, Silicon-on-Insulator, Latches and Memory Cells , 2007, IEEE Transactions on Nuclear Science.

[9]  Shigeru Okabe,et al.  Generalized semiempirical equations for the extrapolated range of electrons , 1972 .

[10]  Bichsel,et al.  Barkas effect and effective charge in the theory of stopping power. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[11]  P. Oldiges,et al.  Single-Event-Upset Critical Charge Measurements and Modeling of 65 nm Silicon-on-Insulator Latches and Memory Cells , 2006, IEEE Transactions on Nuclear Science.

[12]  John W. Negele,et al.  The mean-field theory of nuclear structure and dynamics , 1982 .

[13]  Christopher F. Powell,et al.  Nucleon-induced secondaries: A review and future experimental developments , 1997 .

[14]  H.H.K. Tang,et al.  SEMM-2: a modeling system for single event upset analysis , 2004, IEEE Transactions on Nuclear Science.

[15]  G. L. Hash,et al.  Effects of particle energy on proton-induced single-event latchup , 2005, IEEE Transactions on Nuclear Science.

[16]  David F. Heidel,et al.  Single-event-upset and alpha-particle emission rate measurement techniques , 2008, IBM J. Res. Dev..

[17]  Romero,et al.  Measurements of 65 MeV Fe, Sn, and Pb(n,n'x) continuum cross sections. , 1996, Physical review. C, Nuclear physics.

[18]  K. Bernstein,et al.  Soft error rate scaling for emerging SOI technology options , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[19]  Henry H.K. Tang Nuclear Processes and Soft Fails in Microelectronics , 2005 .

[20]  G. R. Srinivasan,et al.  Parameter-free, predictive modeling of single event upsets due to protons, neutrons, and pions in terrestrial cosmic rays , 1994 .

[21]  G. Srinivasan,et al.  Accurate, predictive modeling of soft error rate due to cosmic rays and chip alpha radiation , 1994, Proceedings of 1994 IEEE International Reliability Physics Symposium.

[22]  Henry H. K. Tang,et al.  Nuclear physics of cosmic ray interaction with semiconductor materials: Particle-induced soft errors from a physicist's perspective , 1996, IBM J. Res. Dev..

[23]  H.H.K. Tang,et al.  Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground , 2004, IEEE Transactions on Nuclear Science.

[24]  David F. Heidel,et al.  New simulation methodology for effects of radiation in semiconductor chip structures , 2008, IBM J. Res. Dev..

[25]  Nils Olsson,et al.  Measurements of neutron-induced fission cross sections for Bi209,Pbnat,Pb208,Au197,Wnat, and Ta181 in the intermediate energy region , 2004 .

[26]  U. Fano,et al.  Penetration of protons, alpha particles, and mesons , 1963 .

[27]  Herman Feshbach,et al.  The statistical theory of multi-step compound and direct reactions , 1980 .

[28]  D. McMorrow,et al.  The contribution of nuclear reactions to heavy ion single event upset cross-section measurements in a high-density SEU hardened SRAM , 2005, IEEE Transactions on Nuclear Science.

[29]  James F. Ziegler,et al.  Terrestrial cosmic rays , 1996, IBM J. Res. Dev..

[30]  E. A. Uehling Penetration of Heavy Charged Particles in Matter , 1954 .

[31]  L C Northcliffe,et al.  Passage of Heavy Ions Through Matter , 1963 .

[32]  A. Prokofiev Compilation and systematics of proton-induced fission cross-section data , 2001 .

[33]  D. M. Brink,et al.  Semi-classical methods for nucleus-nucleus scattering , 1985 .

[34]  R. R. O'Brien,et al.  A field-funneling effect on the collection of alpha-particle-generated carriers in silicon devices , 1981, IEEE Electron Device Letters.

[35]  G. R. Srinivasan,et al.  Soft-error Monte Carlo modeling program, SEMM , 1996, IBM J. Res. Dev..

[36]  Gerald H. Thomas,et al.  Hadron physics at very high energies , 1973 .

[37]  P. Dodd,et al.  Effects of Angle of Incidence on Proton and Neutron-Induced Single-Event Latchup , 2006, IEEE Transactions on Nuclear Science.