Forced unsteady‐state processes in heterogeneous catalytic reactors

On analyse les principales techniques d'etude et de conception des procedes catalytiques heterogenes dans des conditions de fonctionnement en regime instationnaire force (FUSO). Les aspects consideres sont les suivants: a) pourquoi les procedes FUSO sont-ils theoriquement plus efficaces que les procedes en regime permanent classiques?; b) comment un procede FUSO peut-il etre concu?; c) le fonctionnement a ecoulement inverse; d) l'oxydation partielle dans un lit fluidise circulant; e) les procedes qui peuvent etre interessants dans des conditions FUSO a l'echelle commerciale, et les raisons pour lesquelles leur emploi ne s'est pas generalise dans l'industrie; f) les systemes FUSO non employes a l'echelle commerciale, tels que la chromatographie de reaction, le cyclage des compositions d'entree, le cyclage des temperatures d'entree; g) que pourrait-on faire pour encourager l'utilisation des FUSO dans l'industrie? Cette etude demontre le nombre considerable de donnees qui ont ete recueillies sur les procedes pour un fonctionnement FUSO. Traduire ces efforts en succes commercial devient possible seulement lorsque les chercheurs comprennent parfaitement les principes fondamentaux du systeme FUSO sur lequel ils travaillent. Un bref examen des recherches passees et actuelles suggere qu'un procede catalytique fonctionnant de maniere optimale en mode FUSO ne sera jamais moins efficace qu'un procede en regime permanent optimale.

[1]  A. S. Noskov,et al.  Progress in reverse-process application to catalytic incineration problems , 1993 .

[2]  Rutherford Aris,et al.  Analysis and performance of a countercurrent moving-bed chromatographic reactor , 1985 .

[3]  A. Sleight,et al.  Maleic anhydride from C-4 feedstocks using fluidized bed reactors , 1987 .

[4]  Yu.Sh. Matros Performance of catalytic processes under unsteady conditions , 1990 .

[5]  Peter L. Silveston,et al.  Feed composition modulation of hydrocarbon synthesis over a cobalt oxide catalyst , 1986 .

[6]  L. Kershenbaum,et al.  Combined reaction and separation in pressure swing processes , 1994 .

[7]  Y. Matros,et al.  Unsteady-State Performance of Heterogeneous Catalytic Reactions , 1983 .

[8]  Christian Wandrey,et al.  Zur Beeinflussung der Produktverteilung durch periodische Konzentrationsschwankungen bei der Oxidation von Kohlenwasserstoffen , 1973 .

[9]  Gilbert F. Froment,et al.  A BENCH SCALE STUDY OF REVERSED FLOW METHANOL SYNTHESIS. , 1992 .

[10]  R. Hudgins,et al.  Investigation of so2 oxidation rates in trickle‐bed reactors operating at low liquid flow rates , 1992 .

[11]  A. S. Noskov,et al.  Reverse-process for NOx - off gases decontamination , 1993 .

[12]  David W. Agar,et al.  Extended reactor concept for dynamic DeNOx design , 1988 .

[13]  T. S. Wittrig,et al.  Bidirectional adiabatic synthesis gas generator , 1990 .

[14]  F. E. Gore Performance of Chromatographic Reactors in Cyclic Operation , 1967 .

[15]  H. A. El Masry,et al.  The Claus reaction: Effect of forced feed composition cycling , 1985 .

[16]  O. Lapina,et al.  Mechanism of sulphur dioxide oxidation over supported vanadium catalysts , 1989 .

[17]  G. Gau,et al.  Redox kinetics of benzene oxidation to maleic anhydride , 1983 .

[18]  P. L. Silveston,et al.  Modellling of catalytic SO2 oxidation for continuous and periodic liquid flow through a trickle bed , 1994 .

[19]  Peter L. Silveston,et al.  Methanol synthesis under periodic operation: An experimental investigation , 1994 .

[20]  P. L. Silveston,et al.  Composition cycling of an SO2 oxidation reactor , 1977 .

[21]  P. L. Silveston,et al.  Fischer-Tropsch synthesis under periodic operation , 1995 .

[22]  R. W. Carr,et al.  An experimental study of the countercurrent moving-bed chromatographic reactor , 1989 .

[23]  Peter L. Silveston,et al.  Influence of forced feed composition cycling on catalytic methanol synthesis , 1985 .

[24]  P. L. Silveston,et al.  Periodic operation of a trickle‐bed reactor , 1989 .

[25]  Gilbert F. Froment,et al.  Modelling and simulation of the reversed flow operation of a fixed-bed reactor for methanol synthesis , 1993 .

[26]  Robert G. Rinker,et al.  The efficacy of concentration forcing , 1989 .

[27]  Hyun-Ku Rhee,et al.  Creeping Profiles in Catalytic Fixed Bed Reactors. Continuous Models , 1974 .

[28]  L. S. Kershenbaum,et al.  Effect of Periodic Operation on the Selectivity of Catalytic Reactions , 1978 .

[29]  G. Bunimovich,et al.  Control of Volatile Organic Compounds by the Catalytic Reverse Process , 1995 .

[30]  P. L. Silveston,et al.  Forced Composition Cycling Experiments in a Fixed-Bed Ammonia Synthesis Reactor , 1982 .

[31]  E. A. Mamedov Beneficial influences of the reactive atmosphere on selective oxidation catalysts , 1994 .

[32]  P. L. Silveston,et al.  Influence of forced feed composition cycling on the rate of ammonia synthesis over an industrial iron catalyst part I — Effect of cycling parameters and mean composition , 1983 .

[33]  Albert Renken,et al.  Transient Behaviour of Heterogeneous Catalytic Reactions with Educt Inhibition , 1984 .

[34]  P. L. Silveston,et al.  Influence of forced cycling on the fischer-tropsch synthesis part III. A model for forced concentration cycling over promoted iron catalyst , 1985 .

[35]  R. L. Kabel,et al.  The effect of temperature changes on a tubular heterogeneous catalytic reactor , 1970 .

[36]  L. Chiao,et al.  A kinetic study of ammonia synthesis: modeling high-pressure steady-state and forced-cycling behavior , 1989 .

[37]  P. L. Silveston,et al.  Investigation of the catalytic oxidation of benzene to maleic anhydride by wave front analysis with respect to the application of periodic operation , 1983 .

[38]  Albert Renken Unsteady-State Operation of Continuous Reactors , 1982 .

[39]  Peter L. Silveston,et al.  The fischer—tropsch synthesis over a ruthenium catalyst under composition cycling , 1987 .

[40]  L. N. Bobrova,et al.  Unsteady-state performance of NOx catalytic reduction by NH3 , 1988 .

[41]  G. G. Vaporciyan,et al.  Periodic separating reactors: Experiments and theory , 1989 .

[42]  Ulrich Nieken,et al.  Catalytic combustion with periodic flow reversal , 1988 .

[43]  Grigorii A. Bunimovich,et al.  SO2 oxidation in a reverse-flow reactor: Influence of a vanadium catalyst dynamic properties , 1995 .

[44]  L. Chiao,et al.  CONCENTRATION FORCING IN AMMONIA SYNTHESIS: PLUG-FLOW EXPERIMENTS AT HIGH TEMPERATURE AND PRESSURE , 1987 .

[45]  P. L. Silveston,et al.  Symposium on application of pulse techniques to kinetic measurements: Influence of cycling on the rate of oxidation of SO2 over a vanadia catalyst , 1973 .

[46]  B. Erik Ydstie,et al.  Periodic forcing of the CSTR: An Application of the generalized II-criterion , 1991 .

[47]  V. Sokolovskii Principles of Oxidative Catalysis on Solid Oxides , 1990 .