Absolute binding free energies for octa-acids and guests in SAMPL5

As part of the SAMPL5 blind prediction challenge, we calculate the absolute binding free energies of six guest molecules to an octa-acid (OAH) and to a methylated octa-acid (OAMe). We use the double decoupling method via thermodynamic integration (TI) or Hamiltonian replica exchange in connection with the Bennett acceptance ratio (HREM-BAR). We produce the binding poses either through manual docking or by using GalaxyDock-HG, a docking software developed specifically for this study. The root mean square deviations for our most accurate predictions are 1.4 kcal mol−1 for OAH with TI and 1.9 kcal mol−1 for OAMe with HREM-BAR. Our best results for OAMe were obtained for systems with ionic concentrations corresponding to the ionic strength of the experimental solution. The most problematic system contains a halogenated guest. Our attempt to model the σ-hole of the bromine using a constrained off-site point charge, does not improve results. We use results from molecular dynamics simulations to argue that the distinct binding affinities of this guest to OAH and OAMe are due to a difference in the flexibility of the host. We believe that the results of this extensive analysis of host-guest complexes will help improve the protocol used in predicting binding affinities for larger systems, such as protein-substrate compounds.

[1]  New optimization method for conformational energy calculations on polypeptides: Conformational space annealing , 1997 .

[2]  David L. Mobley,et al.  The SAMPL4 host–guest blind prediction challenge: an overview , 2014, Journal of Computer-Aided Molecular Design.

[3]  Ricardo A. Mata,et al.  Free-energy perturbation and quantum mechanical study of SAMPL4 octa-acid host–guest binding energies , 2014, Journal of Computer-Aided Molecular Design.

[4]  David S. Goodsell,et al.  A semiempirical free energy force field with charge‐based desolvation , 2007, J. Comput. Chem..

[5]  David L Mobley,et al.  Treating entropy and conformational changes in implicit solvent simulations of small molecules. , 2008, The journal of physical chemistry. B.

[6]  B. Gibb,et al.  Nonmonotonic assembly of a deep-cavity cavitand. , 2011, Journal of the American Chemical Society.

[7]  Traian Sulea,et al.  Exhaustive docking and solvated interaction energy scoring: lessons learned from the SAMPL4 challenge , 2014, Journal of Computer-Aided Molecular Design.

[8]  Jian Yin,et al.  Overview of the SAMPL5 host–guest challenge: Are we doing better? , 2016, Journal of Computer-Aided Molecular Design.

[9]  P. C. Hariharan,et al.  Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory , 1974 .

[10]  Christopher I. Bayly,et al.  Efficient calculation of SAMPL4 hydration free energies using OMEGA, SZYBKI, QUACPAC, and Zap TK , 2014, Journal of Computer-Aided Molecular Design.

[11]  Corinne L. D. Gibb,et al.  Binding of cyclic carboxylates to octa-acid deep-cavity cavitand , 2014, Journal of Computer-Aided Molecular Design.

[12]  Michael R. Shirts,et al.  Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. , 2003, Physical review letters.

[13]  Stefan Bruckner,et al.  Efficiency of alchemical free energy simulations. II. Improvements for thermodynamic integration , 2011, J. Comput. Chem..

[14]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[15]  Bogdan I. Iorga,et al.  Prediction of hydration free energies for the SAMPL4 diverse set of compounds using molecular dynamics simulations with the OPLS-AA force field , 2014, Journal of Computer-Aided Molecular Design.

[16]  Pengyu Y. Ren,et al.  Calculation of protein–ligand binding free energy by using a polarizable potential , 2008, Proceedings of the National Academy of Sciences.

[17]  J. Donoso,et al.  Theoretical pKa calculations with continuum model solvents, alternative protocols to thermodynamic cycles , 2014 .

[18]  Deok-Soo Kim,et al.  GalaxyDock2: Protein–ligand docking using beta‐complex and global optimization , 2013, J. Comput. Chem..

[19]  Wei Jiang,et al.  CHARMM-GUI Ligand Binder for Absolute Binding Free Energy Calculations and Its Application , 2013, J. Chem. Inf. Model..

[20]  Jonathan W. Essex,et al.  Generalized alteration of structure and parameters: A new method for free‐energy perturbations in systems containing flexible degrees of freedom , 1995, J. Comput. Chem..

[21]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[22]  D. D. Perrin Dissociation contants of inorganic acids and bases in aqueous solution , 1969 .

[23]  B. Roux,et al.  Calculation of absolute protein-ligand binding free energy from computer simulations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Gilson,et al.  The statistical-thermodynamic basis for computation of binding affinities: a critical review. , 1997, Biophysical journal.

[25]  Stefan Bruckner,et al.  Unorthodox uses of Bennett's acceptance ratio method , 2009, J. Comput. Chem..

[26]  J. Guthrie,et al.  A blind challenge for computational solvation free energies: introduction and overview. , 2009, The journal of physical chemistry. B.

[27]  S. Takada,et al.  On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction , 2002 .

[28]  Hee-Cheon Lee,et al.  Carceroisomerism and twistomerism in C4c tetraoxatetrathiahemicarceplexes , 1999 .

[29]  T. Straatsma,et al.  Separation‐shifted scaling, a new scaling method for Lennard‐Jones interactions in thermodynamic integration , 1994 .

[30]  M. Gilson,et al.  Calculation of protein-ligand binding affinities. , 2007, Annual review of biophysics and biomolecular structure.

[31]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[32]  B. Gibb,et al.  C-H...X--R (X = Cl, Br, and I) hydrogen bonds drive the complexation properties of a nanoscale molecular basket. , 2001, Journal of the American Chemical Society.

[33]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[34]  Yuko Okamoto,et al.  Replica-exchange method in van der Waals radius space: overcoming steric restrictions for biomolecules. , 2009, The Journal of chemical physics.

[35]  Stefan Bruckner,et al.  Efficiency of alchemical free energy simulations. I. A practical comparison of the exponential formula, thermodynamic integration, and Bennett's acceptance ratio method , 2011, J. Comput. Chem..

[36]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[37]  Vanja Majstorovic,et al.  Changes in high-molecular weight compounds during beech litter decomposition , 2011 .

[38]  Christophe Chipot,et al.  Standard binding free energies from computer simulations: What is the best strategy? , 2013, Journal of chemical theory and computation.

[39]  Willem Verboom,et al.  Calix[4]arene‐Based (Hemi)carcerands and Carceplexes: Synthesis, Functionalization, and Molecular Modeling Study , 1997 .

[40]  W. L. Jorgensen The Many Roles of Computation in Drug Discovery , 2004, Science.

[41]  K. Dill,et al.  Predicting absolute ligand binding free energies to a simple model site. , 2007, Journal of molecular biology.

[42]  B. Gibb,et al.  Guest binding and orientation within open nanoscale hosts. , 2003, Chemistry.

[43]  Michael K. Gilson,et al.  Overcoming dissipation in the calculation of standard binding free energies by ligand extraction , 2013, J. Comput. Chem..

[44]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[45]  Gerhard König,et al.  Multiscale Free Energy Simulations: An Efficient Method for Connecting Classical MD Simulations to QM or QM/MM Free Energies Using Non-Boltzmann Bennett Reweighting Schemes , 2014, Journal of chemical theory and computation.

[46]  Chaok Seok,et al.  Evaluation of GalaxyDock Based on the Community Structure-Activity Resource 2013 and 2014 Benchmark Studies , 2016, J. Chem. Inf. Model..

[47]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[48]  Anthony Nicholls,et al.  The SAMPL2 blind prediction challenge: introduction and overview , 2010, J. Comput. Aided Mol. Des..

[49]  David L Mobley,et al.  Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. , 2008, Journal of medicinal chemistry.

[50]  Ye Mei,et al.  Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4 , 2014, Journal of Computer-Aided Molecular Design.

[51]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[52]  Michael K. Gilson,et al.  Blind prediction of host–guest binding affinities: a new SAMPL3 challenge , 2012, Journal of Computer-Aided Molecular Design.

[53]  G. Shields,et al.  Accurate pK(a) calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. , 2001, Journal of the American Chemical Society.

[54]  Stefan Boresch,et al.  Absolute Binding Free Energies: A Quantitative Approach for Their Calculation , 2003 .

[55]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[56]  Bernard R. Brooks,et al.  Predicting binding affinities of host-guest systems in the SAMPL3 blind challenge: the performance of relative free energy calculations , 2011, Journal of Computer-Aided Molecular Design.

[57]  Peter Politzer,et al.  Expansion of the σ-hole concept , 2009, Journal of molecular modeling.

[58]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[59]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[60]  David L Mobley,et al.  Small molecule hydration free energies in explicit solvent: An extensive test of fixed-charge atomistic simulations. , 2009, Journal of chemical theory and computation.

[61]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[62]  Jie Zhu,et al.  BEDAM binding free energy predictions for the SAMPL4 octa-acid host challenge , 2015, Journal of Computer-Aided Molecular Design.

[63]  Jooyoung Lee,et al.  LigDockCSA: Protein–ligand docking using conformational space annealing , 2011, J. Comput. Chem..

[64]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[65]  T. Upton,et al.  A deuterated deep-cavity cavitand confirms the importance of C-H...X-R hydrogen bonds in guest binding. , 2006, Chemical communications.

[66]  Justin A. Lemkul,et al.  Parametrization of halogen bonds in the CHARMM general force field: Improved treatment of ligand-protein interactions. , 2016, Bioorganic & medicinal chemistry.

[67]  Wilfred F van Gunsteren,et al.  Free energies of ligand binding for structurally diverse compounds. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  K. Dill,et al.  Binding of small-molecule ligands to proteins: "what you see" is not always "what you get". , 2009, Structure.

[69]  Donald G Truhlar,et al.  Density functionals with broad applicability in chemistry. , 2008, Accounts of chemical research.

[70]  Hisashi Okumura,et al.  Hamiltonian replica‐permutation method and its applications to an alanine dipeptide and amyloid‐β(29–42) peptides , 2013, J. Comput. Chem..

[71]  Stefan Bruckner,et al.  Avoiding the van der Waals endpoint problem using serial atomic insertion , 2011, J. Comput. Chem..